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It is not uncommon for those who have been working 
for more than two decades in any field to feel old, some-
times nostalgic, and criticizing young people and their 
new ways. It is not uncommon for us to condemn that 
“medicine with this generation that is here has no 
future”. However, let us not forget that this also hap-
pened to us when we were young and that there were 
other old people who also condemned us. Certainly, 
before them, others have gone through in a similar sce-
nario, possibly, it has always been like this...

In an individual analysis, the time we lost in our pro-
fessional lives is the time we felt like heroes of our own 
existence and focused on accumulating knowledge so 
that we are better today than we once were. However, 
as we mature, we look at the movie of our professional 
life, which was always shot in black and white and with 
outdated, obsolete technology. Then we realize that 
much has changed, that the pace has changed, that the 
generations have run their course and that today, bound 
by strong bonds of memory and self-knowledge, we 
must set out in search of a new (rediscovered) time.

By extending our gaze to the horizon of any medical 
specialty, we can transcend the same permanent search 
for a new time. Neuroradiology and neuroradiologists, 
in particular, deserve careful reflection, with a view to 
defining nuances that appreciate their limits and scope. 
We have been taught that “clinical practice is sovereign”. 
I don’t know who said that, but it certainly wasn’t a 21st 
century neuroradiologist.

Who among us hasn’t heard a clinician, more con-
cerned with to semiological rigor, say that our hypothe-
ses, sometimes based on an elaborate imaging study, 
don’t fit that specific scenario? How many of us, inter-
locutors rooted in the rigor of a detailed interpretation 
of our studies, have not yet responded that the imaging 
diagnosis may precede the classic clinical presentation 
of a florid syndrome? In this regard, the “clinical and 
imaging times” cannot be seen as antagonistic nor as 
immiscible compounds. The origin of clinical knowledge 
cannot be ignored, but it is essential to understand and 
decipher it in the light of current science. Let us always 
remember that classical neurological syndromes began 
to flourish as a way of consolidating knowledge and 
passing it on, around 150 years ago. The old is not 
necessarily obsolete, but the way of seeing it can no 
longer be done with the same eyes as before.

Over the years, we have seen major revolutions in 
neurological diagnosis, first with computed tomography 
(CT), which has replaced pneumoencephalography, and 
then with magnetic resonance imaging (MRI). We have 
already seen how MRI has demystified topographic, syn-
dromal and even etiologic diagnosis in medical practice. 
Now we are witnessing how the highest magnetic fields 
of our machines, currently over 10.0 Tesla, promise to 
unlock unexplored frontiers of microneuroanatomy, phys-
iology and even pathophysiology. Over the past decade, 
we have witnessed the invasion of imaging into the 
molecular, biochemical and functional environment of the 
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central nervous system and we eagerly await the unveil-
ing of other intricacies, the development of specific tissue 
markers and other microstructural incursions into ner-
vous tissue.

Today, neuroradiology is one of the medical specialties 
whose full practice entails the greatest complexity. Not 
“only” because of the inherent difficulty of diagnosing 
each individual case, but certainly also because of the 
continuous technological development of our instruments 
and, in a broader scope, of neuroscience as a whole. 
Diagnoses have gained in molecular details implicated in 
the composition of genes. They address genetic interac-
tions with the environment and unveil complex immuno-
logical mechanisms, revealing biological markers that 
rename diseases.

We are seeing genetics and molecular studies give 
code names to old neurological syndromes. Almost 
twenty years ago, I could see that these classical names 
had their place in a more noble past of medical semiol-
ogy, when most neurological syndromes and signs were 
described in the late 19th or early 20th century. At that 
time, the neurological practice of attending patients, 
gradually recording the clinical evolution of each case 
step by step and describing a series of signs and symp-
toms, allowed astute observers to describe in detail each 
nuance of the diseases, seeing in this the opportunity to 
perpetuate their names. This is the plot of most syn-
dromes that are now part of a lost time.

Today, genetics, immunology, biochemistry and infec-
tology, particularly of viruses and even prions, replace 
those terrifying foreign names that composed complex 
syndromes and their subtypes or variants. In this way, 
our rediscovered time defines biomarkers, risk markers 
and typifies chromosomes and their loci. It is to these 
distant lands that our terrifying memories will migrate, 
where anonymous scientists will develop means for ever 
earlier and more precise diagnosis and redefine dis-
eases with cold labels of numbers and letters. Who 
remembers the ill-fated name “Hallervorden-Spatz syn-
drome”, now renamed pantothenate kinase-associated 
neurodegeneration, or simply PKAN? It could be the 
well-known Devic’s disease, now redefined and called 
neuromyelitis optical spectrum disorder (NMOSD).

Scientific information is imperative for the evolution and 
practice of any medical activity. However, what we some-
times see with astonishment, is a whirlwind of scientific 
productions, copies, reproductions, original articles, com-
pendia, sophisms and ephemeral truths or those influ-
enced by an increasingly profit-hungry industry. The 
conscious exercise of the specialty, however, entails the 

responsibility that we have to interpret, in the midst of  
this whirlwind, what applies to the environment in which 
we work. It is not wise to reproduce the excesses of a 
purely commercial medical practice, but at the same time 
it is unworthy to judge the technology required for the 
best diagnosis as expensive.

I have long envisioned neuroradiology because I know 
that in the reality of our profession there will always be 
room for the principles that have guided us up to now: 
methodical observation and critical interpretation of results 
aimed at producing creative discussions and consistent 
results. No matter how nostalgic or non-conformist we 
may be, the present and the future will always meet again 
and always in eternal return, so that our practice, no matter 
how notorious it is (or was), will become obsolete.

Although ephemeral or even fleeting, technologies and 
their glimpses cannot be separated from human medical 
practice, nor can they dispense with universal ethical 
precepts. Fortunately, as doctors, we will continue the 
tireless search for a rediscovered time, but without, being 
able to give up our precious lived time, which was never 
lost, it was just an indispensable stage for us to be here 
today, as we are, with everything we have accumulated 
on our journey of discoveries and redefinitions.

In conclusion, the most reasonable view is that the 
diseases are the same and most of them have existed 
since time immemorial. It is the contours of their bases 
and their etiopathogenesis that are being redefined, 
with the grace of rediscovered times to change their 
names, aiming to adapt the new to the most modern. It 
is a fact that we have already entered a new frontier that 
promises to be as permanent or definitive as there are 
eternal and ephemeral truths of science. We are living 
in the days of technological evolution, the same that 
creates machines that become obsolete in a short time. 
This is how science works, particularly neuroradiology, 
which combines art and knowledge by offering us the 
opportunity to make a diagnosis based on detailed train-
ing supported by accumulated scientific information that 
does not make up for lost time, integrating with new 
equipment and modern techniques with a view to unat-
tainable precision.
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ABSTRACT

The integration of artificial intelligence (AI) into medical imaging is transforming cancer diagnosis, prognosis, and treatment 
planning. AI-based tools have shown high accuracy in analyzing images to detect and classify tumors and assess treatment 
response. Further developments combine image data with other metrics and biomarkers, including clinical, molecular and 
genetic data, enabling the development of more effective AI-based clinical decision support systems, that allow oncologists 
to select optimal personalized management and therapy for each patient in real time. Despite these advances, there are 
still some challenges that hinder the implementation of new AI solutions. Key barriers include the problem of availability of 
large, open and harmonized medical datasets, the lack of reproducibility between AI studies in different real-world scenarios, 
and ethical and regulatory issues. Addressing these challenges requires interdisciplinary collaboration between clinicians, 
data scientists and regulators. Initiatives such as FUTURE-AI and data sharing projects such as the European Federation 
for Cancer Images (EUCAIM) are important steps towards developing trustworthy and effective AI systems. New advances 
in this field will undoubtedly improve personalization approaches and ultimately patient outcomes.

Keywords: Diagnostic imaging. Artificial intelligence. Oncology.

INTRODUCTION

Cancer continues to pose a significant global health 
burden, accounting for substantial rates of morbidity and 
mortality across diverse populations. This requires con-
tinuous progress in early detection, precise diagnosis 
and personalized treatment strategies1. Among the most 
important tools in oncologic care, medical imaging plays 
a pivotal role as it provides essential information for 
tumor characterization, disease staging, treatment res-
ponse monitoring, and long-term surveillance. However, 

the increasing complexity of oncologic imaging, and the 
demand for more accurate and reproducible assess-
ments have underscored the need for computational 
approaches to improve diagnostic accuracy and daily 
clinical workflows.

Artificial intelligence (AI) has emerged as a transfor-
mative force in oncologic imaging, leveraging machine 
learning and deep learning techniques to improve image 
analysis, automate labor-intensive tasks and facilitate 
data-driven decisions2. Radiology is at the forefront of 
AI adoption due to its reliance on large-scale digital 
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repositories of image data, which provide the foundation 
for training robust AI models3,4. The increasing availabil-
ity of high-throughput computational resources and 
advances in deep learning architectures, particularly 
convolutional neural networks (CNNs), have enabled AI 
systems to perform image reconstruction, lesion detec-
tion, tumor segmentation, and quantitative feature 
extraction with growing accuracy and efficiency5,6.

AI applications in oncological imaging span multiple 
stages of the diagnosis and treatment pipeline. In image 
acquisition and post-processing, AI improves image 
quality, reduces radiation exposure, optimizes scan pro-
tocols and minimizes contrast doses, ultimately incre-
asing patient safety3. AI-driven algorithms for lesion 
detection and segmentation have shown enhanced effi-
cacy in comparison to traditional manual methods, 
which are time-consuming and prone to inter-observer 
variability6,7. Furthermore, the application of AI in radio-
mics has facilitated the extraction of high-dimensional 
quantitative imaging features as biomarkers that capture 
tumor heterogeneity and correlate with clinically rele-
vant endpoints such as tumor aggressiveness, response 
to treatment and prognosis8,9. Clinical decision support 
systems (CDSS) using AI and integrating imaging data 
with genomic, molecular and clinical information are 
also being developed, enabling a more comprehensive 
and personalized approach to cancer care10,11.

In addition to radiomics, habitat imaging is an emerg-
ing AI-powered approach that seeks to map different 
tumor subregions based on the spatial distribution of 
imaging biomarkers. By segmenting tumors into differ-
ent biologically and physiologically distinct habitats, 
this technique provides deeper insights into the tumor 
microenvironment, aiding in patient stratification and 
optimizing therapeutic strategies5,12. These advances 
align with the growing emphasis of precision oncology, 
where AI-driven insights can lead to treatment deci-
sions tailored to individual tumor characteristics.

Despite its potential, the widespread clinical imple-
mentation of AI in oncologic imaging is hindered by 
several challenges. One of the most critical issues is the 
interpretability of AI models, often referred to as a “black 
box” problem, limiting transparency and clinician confi-
dence11,13. In addition, there are concerns regarding the 
generalizability of AI models, as algorithms trained on 
limited or homogeneous datasets may underperform 
when applied to varied patient populations. This high-
lights the need for large-scale validation studies in dif-
ferent settings and demographic groups14. Ethical and 

legal considerations, including data pri vacy, accountabil-
ity in AI-based decision-making and regulatory approval, 
also pose significant barriers to clinical application14,15.

This review provides a comprehensive analysis of the 
evolving role of AI in oncologic imaging, focusing on key 
areas such as image data harmonization, biomarker 
extraction, predictive modeling, and CDSS. While AI 
has the potential to revolutionize cancer diagnosis and 
treatment, its successful integration into clinical practice 
requires overcoming technical, ethical and regulatory 
challenges. Overcoming these limitations through rigor-
ous validation, explainable AI frameworks and interdis-
ciplinary collaboration will be essential to ensure the 
long-term impact of AI on oncologic care and improve 
patient outcomes. For clarity and consistency, the key 
concepts relevant to AI in oncologic imaging are sum-
marized in table 1.

PREPARATION OF IMAGING DATA FOR 
ANALYSIS

Imaging data repositories

The successful application of AI in oncologic imaging 
relies on access to large-scale, high-quality imaging 
datasets enriched with clinically relevant metadata. AI 
models require extensive training, testing and valida-
tion datasets to ensure robust performance across dif-
ferent patient populations and imaging conditions16. 
These datasets are often sourced from structured 
repositories, either through direct integration with hos-
pital information systems and medical image viewers 
or as independent web-based platforms designed for 
AI research and development17.

Several large-scale imaging repositories exist to facili-
tate AI research in oncology. Notably, The Cancer Imaging 
Archive (TCIA) and the UK Biobank provide extensive 
collections of radiological images linked to clinical and 
genomic data18,19. In Europe, the European Federation for 
Cancer Images (EUCAIM) project is leading efforts to 
create a federated platform for oncology imaging that 
integrates data from multiple institutions while enabling 
the seamless development of AI applications20. These 
initiatives follow the FAIR (Findable, Accessible, 
Interoperable, Reusable) principles and ensure that imag-
ing datasets are openly accessible and optimally struc-
tured for AI- driven oncology research21.

However, despite the increasing availability of imag-
ing repositories, some challenges remain. Many of the 
existing datasets are not representative of the global 
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population, often being biased toward specific demo-
graphics or imaging protocols22. Furthermore, interop-
erability between different image archives is limited  
as differences in data structures and metadata formats 
hinder seamless data integration23. To address this, 
emerging platforms emphasize interoperability by stan-
dardizing metadata descriptions, harmonizing data for-
mats, and integrating federated learning frameworks 
that allow AI training without requiring direct data 
exchange24. In addition, the development of AI models 
on the platform is becoming more and more prevalent. 
Some repositories include embedded analytical 
engines for preliminary image interpretation and feature 
extraction, thereby reducing redundancy and acceler-
ating the deployment of AI25.

Harmonization of imaging data

A key challenge in AI-driven oncologic imaging is the 
heterogeneity of imaging datasets, as medical images 
vary significantly due to differences in acquisition  
protocols, scanner manufacturers and institutional prac-
tices26. Retrospective imaging data often lack standard-
ized acquisition settings, making direct comparisons 
between datasets difficult. While this variability presents 

a challenge for AI training, it also provides an opportunity 
to develop generalized models that perform well in dif-
ferent clinical settings27.

To address this variability, harmonization techniques 
have been developed to standardize image features while 
preserving clinically relevant information. Data harmoni-
zation can be categorized into four primary approaches:

−  Distribution-based methods: these techniques ad-
just the intensity distributions between datasets to 
align them with a reference standard. Methods 
such as ComBat, Mutual Nearest Neighbors (MNN) 
and Domain Adaptation are commonly used to 
remove batch effects and improve the comparabi-
lity of datasets28,29.

−  Image processing techniques: resampling, noise re-
duction, intensity normalization and histogram mat-
ching reduce scanner-induced variations, particularly 
in radiomics applications where pixel intensity vari-
ations can significantly affect model performance30.

−  Data synthesis approaches: generative models 
such as CycleGAN and Conditional Variational 
Autoen coders (VAE) have been used to create syn-
thetic images that match the statistical properties of 
real-world datasets, aiding in data augmentation 
and domain adaptation31.

Table 1. Key AI terminology in oncologic imaging

Term Definition

Algorithm A set of mathematical rules used to process training data and develop AI models 

Artificial intelligence (AI) A branch of computer science that enables systems to perform tasks typically require human intelligence, 
such as reasoning, learning, pattern recognition and decision-making 

AI model A trained computer system that applies learned patterns to solve a specific problem in medical imaging, 
e.g. tumor detection or segmentation 

Deep learning A branch of machine learning that uses multilayer neural networks (e.g. CNNs) to extract and learn 
complex patterns from raw imaging data 

Machine learning A branch of AI that enables computers to learn patterns from data without explicit programming. In 
oncologic imaging, machine learning is used to classify tumors, detect lesions and create prognostic 
models 

Foundation models Large-scale deep learning models that can interpret and generate both text and image data. They have 
been trained with extensive unlabeled data and have shown high performance on various tasks

Habitat imaging A technique that uses imaging features to identify different tumor microenvironments to support 
personalized treatment planning

Imaging biomarkers Measurable features derived from medical images that indicate normal or pathological processes and 
responses to treatment

Radiomics A method of extracting a large number of quantitative features from medical images to derive imaging 
biomarkers for diagnosis, prognosis, and treatment response assessment 

AI: artificial intelligence; CNNs: convolutional neural networks.
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−  Invariant feature learning: this approach focuses on 
extracting imaging features that are robust to varia-
tions in acquisition settings to ensure that AI models 
remain unaffected by inter-cohort variability32.

A notable example of harmonization efforts is the 
CHAIMELEON project, which is developing a repository 
of harmonized imaging data for four major cancer 
types: lung, prostate, breast, and colorectal. This initia-
tive integrates harmonization techniques at both the 
image and metadata levels to ensure consistency of 
data and enable training of AI models across multiple 
institutions33,34. However, an important question in har-
monization is whether these changes alter clinically 
relevant image features. Evaluation of harmonization 
strategies requires systematic validation to ensure that 
AI models trained on harmonized data maintain their 
diagnostic and predictive performance in real-world 
applications35.

Segmentation: the foundation for AI 
model development

Accurate tumor segmentation is one of the most crit-
ical steps in AI-driven oncology imaging, as it defines 
the specific voxels belonging to a tumor and directly 
impacts downstream tasks such as classification, 
radiomics feature extraction and response prediction. 
Manual segmentation, typically performed by radiologists, 
is time-consuming, prone to inter-observer variability, 
and difficult to scale across large datasets36. Therefore, 
automated segmentation methods based on deep learn-
ing have become popular, significantly reducing the 
workload of radiologists while ensuring high accuracy 
and consistency37.

Convolutional Neural Networks (CNNs) are the most 
widely used architectures for tumor segmentation, with 
the U-Net and its variants serving as the gold standard 
for different cancer types38. Recent studies have demon-
strated the effectiveness of deep learning-based segmen-
tation models, which achieved Dice similarity coefficients 
of 0.93 for brain tumors and 0.99 for neuroblastoma, 
highlighting their robustness and reliability10,39. 

Advances in AI-driven segmentation increasingly incor-
porate multimodal imaging, e.g. magnetic resonance 
imaging (MRI), positron emission tomography (PET) and 
computed tomography (CT) fusion to improve segmenta-
tion accuracy and capture complementary information 
from different imaging modalities40. Furthermore, atten-
tion mechanisms and transformer-based architectures 
are being explored to refine segmentation maps and 
improve boundary delineation in complex cases41. 

Despite these advances, challenges remain in terms 
of the generalizability and robustness of models. AI  
segmentation models trained on small, homogeneous  
datasets may fail to generalize to unknown cases,  
particularly when imaging protocols are different42. 
Addressing this problem requires access to large, diverse 
and harmonized datasets, as well as federated learning 
strategies that enable cross-institutional model training 
while preserving patient privacy24. The integration of 
AI-driven segmentation into clinical workflows must also 
be carefully considered to ensure that it enhances, rather 
than disrupts, standard radiology practices. 

IMAGE-BIOMARKER EXTRACTION

Radiomics features

The increasing demand for precision oncology has 
driven the development of novel biomarkers that go 
beyond conventional radiologic assessment. Traditional 
imaging-based tumor classification systems rely on 
subjective interpretation and standardized scales that 
often fail to capture the full spectrum of tumor hetero-
geneity, microstructural changes, and aggressiveness. 
Radiomics is an advanced computational approach that 
extracts high-dimensional quantitative features from 
medical images and enables the identification of imag-
ing biomarkers that correlate with clinically significant 
tumor characteristics36,43. By analyzing large datasets 
and integrating radiomics features with clinical, geno-
mic, and histopathological data, AI-driven radiomics 
models have shown promise in improving tumor char-
acterization, treatment response prediction, and prog-
nostic assessment44,45. 

Radiomics features can be categorized into different 
groups depending on the type of information they pro-
vide. First-order statistical features describe the distri-
bution of voxel intensities within a defined region of 
interest (ROI) without considering spatial relationships. 
These include mean, median, standard deviation, 
skewness and kurtosis, which quantify the general 
intensity distribution of the lesion46. Shape-based fea-
tures characterize the geometric properties of the 
lesion, including volume, surface area, sphericity, com-
pactness, and elongation, and provide information 
about the morphology of the tumor.

In addition to these basic descriptors, texture-based 
features evaluate the spatial organization and complex-
ity of voxel intensities. These include models such as 
the Gray Level Co-occurrence Matrix (GLCM), the Gray 
Level Run Length Matrix (GLRLM), the Gray Level Size 
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Zone Matrix (GLSZM), and the Gray Level Dependence 
Matrix (GLDM), which capture tumor heterogeneity and 
microstructural complexity47. The use of convolutional 
filters expands the number of extractable features into 
the thousands and thus enables for a comprehensive 
analysis of tumor features. However, due to the high 
dimensionality of radiomics data, feature selection 
techniques are used to eliminate redundant or non-in-
formative features. Machine learning algorithms, includ-
ing logistic regression, random forests, and Support 
Vector Machines (SVMs), are commonly used for fea-
ture selection and predictive modeling8. 

Deep learning and convolutional neural 
networks

While traditional radiomics relies on explicit feature 
engineering, deep learning (DL) techniques, particu-
larly CNNs, have introduced a paradigm shift in medical 
image analysis by automatically learning hierarchical 
feature representations from imaging data48,49. CNNs 
eliminate the need for manual feature extraction by 
autonomously identifying meaningful imaging biomark-
ers, thus improving the objectivity, reproducibility, and 
generalizability of AI-driven radiomics models50. 

The use of CNNs in oncologic imaging has enabled 
the detection of subtle textural and morphologic 
changes that are often imperceptible to the human eye. 
Studies have shown that deep learning-based radiom-
ics models outperform conventional machine learning 
approaches in predicting tumor recurrence, response 
to therapy and patient survival outcomes51. Additionally, 
CNNs have been integrated into multimodal imaging 
pipelines that combine radiomics with histopathologic, 
genomic, and clinical data to further improve prediction 
accuracy. However, a key challenge in deep learn-
ing-based radiomics is the need for large, high-quality 
annotated datasets to train robust models, highlighting 
the importance of data harmonization and federated 
learning approaches52–54.

Habitat imaging

A promising extension of radiomics is habitat imag-
ing, an approach that segments tumors into biologically 
distinct subregions (habitats) based on differences in 
vascularity, hypoxia and cellular composition. Tumors 
are inherently heterogeneous. Different regions have 
diverse microenvironmental conditions that can influ-
ence response to treatment and disease progression12. 
By identifying these intra-tumoral subregions, habitat 

imaging provides a more detailed characterization of 
tumor biology and enables refined risk stratification and 
personalized treatment selection.

Automated habitat imaging methods use unsuper-
vised learning techniques such as histogram-based 
clustering, Gaussian mixture models and the Fit-
Cluster-Fit approach to differentiate tumor subregions5. 
Recent studies have shown that integrating habitat 
imaging with multiparametric MRI and PET improves 
the prediction of tumor response to radiotherapy and 
systemic therapy55. However, standardization of habitat 
imaging methods remains a challenge, as variations in 
imaging acquisition parameters can affect habitat defi-
nitions and model reproducibility.

Standardization and reproducibility in 
radiomics

One of the major limitations in radiomics research is 
the lack of reproducibility between studies. This is due 
to the variability in imaging acquisition protocols, fea-
ture extraction methodologies and data pre-processing 
pipelines46. To address this issue, the Image Biomarker 
Standardization Initiative (IBSI) was established to 
develop standardized recommendations for radiomics 
feature definitions, nomenclature and computational 
workflows46. The adoption of IBSI-compliant radiomics 
pipelines has been shown to significantly improve the 
reproducibility of radiomics-based biomarkers and facil-
itate their translation into clinical practice56.

Further advances in the standardization of radiomics 
have led to the development of the CLEAR checklist, a 
comprehensive framework consisting of 58 key items 
designed to guide researchers in study design, meth-
odology reporting, and statistical validation57. The 
CLEAR checklist emphasizes rigorous feature selec-
tion, external validation, and transparent reporting of 
radiomics findings, to ensure that AI-driven biomarkers 
meet the necessary criteria for clinical application.

PREDICTIVE MODELS IN ONCOLOGIC 
IMAGING

The integration of radiomics-based predictive mod-
els into oncologic imaging has significantly improved 
the ability to extract clinically relevant insights from 
medical images. By leveraging quantitative imaging 
biomarkers, these models contribute to various aspects 
of precision oncology, including risk assessment,  
diagnosis, prognosis, prediction of response to treat-
ment and toxicity evaluation36,43. Radiomics has been 
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increasingly recognized for its role in identifying phe-
notypic tumor features that are not readily visible 
through conventional radiological assessment, thereby 
refining clinical decision-making and facilitates person-
alized treatment strategies53,58. 

Predictive models can be categorized based on their 
clinical objectives. Susceptibility models assess an 
individual’s predisposition to develop cancer, and thus 
help with early risk stratification. Diagnostic models 
differentiate between disease subtypes or confirm the 
presence of a tumor with higher specificity than tradi-
tional imaging criteria. Prognostic models estimate the 
likelihood of disease progression, recurrence and over-
all survival, guiding long-term clinical management. 
Predictive models evaluate an individual’s expected 
response to a particular therapy, helping to optimize 
treatment selection. In addition, toxicity models predict 
treatment-related adverse effects, allowing clinicians to 
modify therapeutic regimens accordingly54,59. 

Development and validation of predictive 
models

The construction of a robust predictive model follows 
a structured workflow that encompasses data acquisi-
tion, feature selection, model training validation and  
performance assessment. The predictive capability of a 
model is directly influenced by the quality, diversity and 
representativeness of the input data. Large, multi-insti-
tutional datasets are preferred to ensure generalizability. 
In many cases, however, data availability is limited to 
cohorts from a single center, necessitating internal vali-
dation strategies.

Model validation is essential for assessing perfor-
mance, generalizability and clinical reliability. The hold-
out method is the most commonly used approach for 
data partitioning, in which the dataset is split into a 
training set for model development and a validation set 
for estimating future performance on unknown data. To 
mitigate overfitting, the validation data must remain com-
pletely unknown during training. Ideally, external valida-
tion is performed with data from independent institutions 
to ensure robustness. However, if such datasets are not 
available, internal validation approaches are used60.

In single-center studies, the split between training 
and validation splits may be random, temporal, or strat-
ified to ensure a balanced class distribution (e.g. benign 
vs. malignant tumors). Statistical tests including the 
Mann-Whitney U test, the Kolmogorov-Smirnov test or 
the Shapiro-Wilk test are often used to verify that the 

distributions of selected features remain comparable 
between the training and validation datasets. This 
ensure that the model learns clinically meaningful pat-
terns rather than dataset-specific biases61.

When limited sample sizes pose a challenge for 
model training, K-fold cross-validation is used as a 
robust alternative. In this technique, the dataset is split 
into K subsets (typically 5 or 10), with K-1 folds used 
for training and the remaining fold reserved for valida-
tion. This process is repeated K times, ensuring that 
each subset is used once for testing, and the final 
model performance is given as the average of all iter-
ations. Cross-validation reduces the variance intro-
duced by the random split of training and testing, 
leading to more reliable performance estimates62.

Optimization and performance evaluation 
of models

Predictive models often incorporate hyperparameters 
that cannot be learned directly from the training data 
and need to be tuned to optimize performance. Tuning 
hyperparameters is crucial to prevent overfitting and 
underfitting, which are among the major limitations of 
machine learning models46. Overfitting occurs when a 
model learns incorrect patterns that are specific to the 
training data, resulting in poor generalization to exter-
nal datasets. In contrast, underfitting occurs when the 
model is too simplistic and fails to capture meaningful 
relationships within the data, resulting in suboptimal 
performance in both the training and validation sets63.

To mitigate these issues, regularization techniques 
such as LASSO (Least Absolute Shrinkage and 
Selection Operator) regression and dropout layers are 
often used in deep learning architectures64. Ensemble 
learning approaches that combine multiple models (e.g. 
random forests, gradient boosting or stacked models) 
have been shown to improve the robustness of the 
prediction65. The performance evaluation of prediction 
models is based on standard metrics, including: 

−  Accuracy: measures the overall correctness of the 
predictions.

−  Sensitivity (recall): captures the ability of the model 
to detect true positive cases (e.g. identifying ma-
lignant tumors).

−  Specificity: indicates the ability of the model to 
correctly classify negative cases.

−  Area under the Receiver Operating Characteristic 
Curve (AUC-ROC): evaluates the ability of the mo-
del to discriminate between different classes.
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−  Dice Similarity Coefficient (for segmentation mo-
dels): evaluates the overlap between predicted and 
ground-truth tumor regions.

Multivariate models and feature selection

Single-feature models are rarely sufficient for accurate 
predictions, as radiomics-based biomarkers are often 
highly correlated with one another. Multivariate predictive 
models that include multiple imaging and clinical vari-
ables are the standard approach in radiomics research. 
However, increasing the number of input features leads 
to the curse of dimensionality, so feature selection and 
dimensionality reduction techniques are required66. 
Common methods for feature selection include:

−  Principal Component Analysis (PCA): reduces the 
dimensionality of features while retaining the most 
informative components.

−  Recursive Feature Elimination (RFE): iteratively re-
moves the least important features based on mo-
del performance.

−  Mutual Information and Correlation Analysis: iden-
tifies non-redundant, informative features.

Using these methods improves the interpretability, 
reproducibility, and clinical applicability of predictive mod-
els and ensures that the selected biomarkers remain rel-
evant and generalizable across different patient cohorts.

Tumor detection and classification

There are now many AI models that have proven their 
effectiveness in detecting and classifying tumors in 
various organs such as breast, prostate, lung, or brain. 
In particular, AI models have shown remarkable accu-
racy in detecting breast cancer. A recent study, MASAI 
(Mammography Screening with Artificial Intelligence), 
has shown that the use of AI in mammography screen-
ing increased breast cancer detection by 29%, reduced 
physician workload by 44.2%, and did not increase the 
number of false positives67. The AI-based approach 
using the FCBFormer model achieves very high accu-
racy in classifying lesions according to the BI-RADS 
scale (ACC 0.95, F1 0.92 and AUROC 0.99), which is 
a great improvement over the previous model68. For 
prostate cancer detection, automated AI models 
achieve a sensitivity of 0.67, specificity of 0.73 and 
accuracy of 0.72 compared to radiologists who achieve 
a sensitivity of 0.81, specificity of 0.62 and accuracy of 
0.66, using histopathology as a reference69. The use of 
CNNs in the detection and classification of lung cancer 
shows very good performance in all standard imaging 

modalities and reduces false positives and negatives. 
AI models even detect small lung nodules that can 
easily be overlooked by radiologists70. In the study by 
Pandit et al.71 the application of the Multispace Image 
Reconstruction (MIR) technique achieved an ACC of 
0.99 in the classification of lung cancer and reduced 
processing time, outperforming previous models. 
Chattopadhyay et al.55 achieved similarly good results 
with CNN in the classification and segmentation of 
brain tumors (ACC 0.99).

Prediction of histologic and molecular 
type (virtual biopsy)

Information on the histological type, molecular, and 
immunological profile of the tumor is essential for treat-
ment planning and patient stratification. However, these 
assessments require a biopsy, which is associated with 
the risk of side effects and does not always provide a 
complete picture of the tumor, as its composition is 
often heterogeneous. Thanks to radiomic biomarkers 
and developed AI models, it is increasingly possible to 
predict these features with increasing accuracy from 
the analysis of imaging studies. 

Considering its non-invasiveness, completeness, 
accessibility and speed, virtual biopsy (VB) will cer-
tainly increasingly replace classical biopsy and limit its 
application to doubtful cases. Both the development of 
more efficient AI algorithms and improvements in imag-
ing techniques will certainly contribute to this. A notable 
example is the work of Shah et al. who developed a 
machine learning model for radiomics that uses 
Random Forest and other classifiers to distinguish 
small cell lung cancer (SCLC) from other lung lesions 
on computed tomography scans. Their model achieved 
an AUC of up to 0.88, demonstrating the potential of 
radiomics for the early detection of SCLC72. Baldwin 
et al.73 validated a Lung Cancer Prediction Convolutional 
Neural Network (LCP-CNN) for the prediction of malig-
nancy of lung nodules and achieved an AUC of 0.90, 
sensitivity of 99.6%, the model analyzed 1397 nodules 
and showed the potential for improved risk stratification 
and reduction of unnecessary follow-up. Wang et al.74 
developed a deep learning model to predict EGFR 
mutation status in lung cancer patients based on con-
trast-enhanced CT images and achieved an AUC of 
0.81 in the validation cohort. In breast cancer research 
using contrast-enhanced mammography, Petrillo et al.75 
applied radiomics and artificial intelligence to classify 
malignant and benign lesions (ACC 0.96), predict tumor 
grading (ACC 0.84), and identify HER2+ (ACC 0.89) 
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hormone receptor and HR+ (ACC 0.95). For gastroin-
testinal stromal tumors (GIST), a CT-based radiomics 
model in an external validation cohort achieved an AUC 
of 0.94 for discriminating low-risk from high-risk malig-
nancies. Interestingly, similar AUCs were found for 
models using non-contrast and contrast-enhanced CT 
data76. In another study, a CT-based radiomics model 
for predicting the Ki67 index in patients with GIST 
achieved an AUC of 0.78 in an external validation77. 

Predicting survival and response to 
treatment

Predicting survival and response to treatment is a key 
component of personalized medicine, and the develop-
ment of methods based on artificial intelligence and 
radiomic analysis is significantly improving the accu-
racy of prediction. In recent years, numerous studies 
have shown that machine learning and deep learning 
models can predict treatment outcomes and stratify 
patients based on radiomics features, opening up new 
possibilities in precision oncology. A radiomics-based 
prediction model for pediatric neuroblastoma that ana-
lyzed MRI data from 513 patients in the PRIMAGE 
project significantly improved mortality risk stratification 
compared to the conventional INRGSS system, achiev-
ing a C-index of 0. 79 and AUC 0.78 in the discovery 
cohort and significantly improving in the external vali-
dation set (C-index 0.93, AUC 0.95)78. 

Analyzing a collection of nearly 1,200 patients with 
non-small cell lung cancer (NSCLC), Hosny et al.79 
developed a 3D convolutional neural network (CNN) to 
predict 2-year overall survival using CT data and 
achieved an AUC of 0.70 (p < 0.001) for patients treated 
with radiotherapy and an AUC of 0.71 (p < 0.001) for 
patients treated with surgery. The CNN outperformed 
models based only on clinical parameters and engi-
neered radiomic features alone, demonstrating its 
robustness in stratifying high- and low mortality risk 
groups. Sun et al.80 developed a radiomics-based 
model using contrast-enhanced CT to assess tumor- 
infiltrating CD8 cells and predict response to anti-PD-1/
PD-L1 immunotherapy in patients with advanced solid 
tumors. The model was trained on 135 patients and 
validated in independent datasets. The biomarker 
effectively discriminated between inflamed and immu-
nodeficient tumors (AUC 0.76, p < 0.0001) and stratified 
immunotherapy-treated patients into high- and low-risk 
groups. A high radiomics score was associated with 
prolonged overall survival (HR 0.58, p = 0.0081) and 
better disease control at 6 months (p = 0.013).

Integration of multimodal biomedical data 
and development of a CDSS

Advances in oncology technology are paving the way 
for the development of a sophisticated Clinical Decision 
Support System (CDSS) that integrates multiple data 
sources and assists in real-time diagnostic and thera-
peutic decisions. Such a system could support every 
phase of patient care, from the initial consultation with 
an oncologist to long term follow-up care. In oncology, 
there is no single predictive marker that can fully cap-
ture the biological complexity of malignancies. Therefore, 
integrated predictive models that combine radiomics 
with other biomarkers allow for better classification of 
tumors, assessment of their aggressiveness and pre-
diction of response to treatment. The implementation of 
such models based on systemic tumor biology enables:

−  Identification of tumor development mechanisms.
−  More precise classification of tumors based on 

their unique characteristics.
−  Integration of genetic and tumor protein expression 

data, imaging parameters, and phenotypic data.
−  A comprehensive understanding of cancer biology 

to support more accurate diagnosis, prognosis and 
tailored therapeutic strategies for patients10,81.

As expected, models that incorporate not only radio-
mics but also clinical, molecular and laboratory data 
outperform models based on imaging alone. This has 
been the focus of numerous studies. In the study by 
Hao et al.82 a machine learning-based classification 
model for predicting anaplastic lymphoma kinase (ALK) 
rearrangement status in non-small cell lung cancer 
(NSCLC) was developed using non-enhanced CT 
images and clinical features. The study included 193 
patients (154 training, 39 validation), from which 157 
radiomic features and 8 clinical parameters were 
extracted. The best performing Support Vector Machine 
(SVM) model achieved an AUC of 0.91 in the validation 
cohort, outperforming models based only on clinical 
(AUC 0.73) and radiomics data alone (AUC 0.890). The 
radiomics model using the habitat method in combina-
tion with clinical data showed high performance (AUC 
0.83 in the validation cohort, AUC 0.81 in the external 
test sets) in predicting EGFR mutation status in I stage 
of NSCLC. The radiomics-only model achieved an AUC 
of 0.81 and 0.79, respectively83. In a study by Koyama 
et  al.84 an AI model that used patient characteristics, 
oncologic treatment history, and radiomic features from 
contrast-enhanced CT predicted overall survival in 
patients with NSCLC with a C-index of 0.84, outperform-
ing the Cox proportional hazards model (C-index 0.775). 
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Figure 1. A: [18F] FDG-PET scan of a patient with multiple myeloma, highlighting metabolic activity. B: 3D-rendered bone CT with PET-based tumor 
segmentation to quantify radiomic features.
CT: computed tomography; [18F] FDG: 18Fluorine-fluorodeoxyglucose; PET: positron emission tomography.

A B

The model successfully identified patients at high risk of 
poor prognosis, e.g., those who responded poorly to 
pembrolizumab despite high PD-L1 expression. Zhang 
et al.85 explored radiomics and AI in the prognosis of 
pancreatic ductal adenocarcinoma, integrating imaging 
biomarkers with genomic and clinical data. 

A transfer learning-based CNN model significantly 
improved the prediction of overall survival (AUC 0.81), 
outperforming traditional radiomics models (AUC 0.54) 
with a hazard ratio of 1.86 (95% CI 1.15-3.53, p = 0.04). 
Othman et al.86 presented a deep learning model for 

breast cancer survival prediction combining clinical, gene 
expression, and copy number alteration data. Feature 
extraction was performed using CNNs, followed by clas-
sification using LSTM and GRU networks. Decision-level 
fusion using a voting classifier improved prediction accu-
racy and achieved an AUC of 0.982, outperforming the 
individual models (GRU: AUC 0.96, LSTM: AUC 0.95). 
Park et al.87 developed a radiomics-based model using 
preoperative MRI to estimate disease-free survival (DFS) 
in invasive breast cancer. A combined radiomics-based 
nomogram integrating MRI findings and clinicopathologic 



J Mex Fed Radiol iMaging. 2025;4(2):69-83

78

data outperformed traditional models, achieving a 
C-index of 0.76 compared with 0.72 for clinicopathologic 
features alone and 0.67 for the Rad-score alone. Chitalia 
et al.88 analyzed preoperative DCE-MRI scans of breast 
cancer patients and extracted 60 radiomics texture and 
morphology features to classify tumor heterogeneity. The 
high heterogeneity phenotype correlated with aggressive 
tumor features and significantly worse 10-year survival 
without recurrence (p < 0.05). The inclusion of radiomics 
phenotypes in a Cox model improved the accuracy of 
recurrence prediction (C-index 0.73) compared to models 
using only histopathologic markers (C-index 0.55). 

The implementation of a CDSS capable of dynami-
cally analyzing multimodal information integrating clin-
ical, imaging, molecular, and laboratory data requires 
automation of data collection, extraction and predictive 
analysis processes. These can be modules embedded 

in hospital systems or stand-alone digital platforms to 
which patient-specific diagnostic data are uploaded. 
The development of an efficient and automated CDSS 
marks a significant step towards next-generation per-
sonalized medicine that increases diagnostic accuracy, 
reduces errors and improves workflow efficiency. 
Ultimately, this approach will lead to better patient out-
comes and a higher quality of life by enabling thera-
peutic decisions based on a comprehensive analysis 
of multimodal data.

CHALLENGES OF APPLYING AI IN 
ONCOLOGY IMAGING

AI offers a great opportunity in oncology, but clinical 
applications of AI remain limited due to lack of trust, 
ethical concerns, and regulatory challenges. Without the 

Figure 2. Image processing pipeline for multiple myeloma, integrating CT, MRI, and PET images as source data. The pipeline includes image 
preparation (image harmonization, registration and lesion detection), processing (quantitative extraction of imaging features) and data integration 
to develop predictive models for improved disease characterization.
CT: computed tomography: MRI: magnetic resonance imaging; PET: positron emission tomography.
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transparency and interpretability of AI tools (the black 
box problem), clinicians may be reluctant to rely on AI 
to make critical decisions. Key aspects of any project 
must ensure GDPR compliance. These include conduct-
ing Data Protection Impact Assessments (DPIAs), defin-
ing roles for users and data controllers, and implementing 
safeguards such as encryption and access restrictions 
to protect patients from being identified. When develop-
ing AI, it is important to find a balance between data 
protection and data accessibility. Data must be ano-
nymized or pseudonymized in accordance with the 
requirements of the General Data Protection Regulation 
(GDPR). Pseudonymization makes it possible to link the 
data to the patient, if necessary, while full anonymization 
is more difficult to reverse, but complies better with the 
regulations. In addition, the development of AI is often 
limited by insufficient access to an adequate quantity 
and quality of medical data, its harmonization and prob-
lems with the integration and standardization of data 
from different modalities17.

AI models in healthcare require large amounts of 
data to effectively train and validate models. However, 
access to large, publicly available datasets remains 
limited, and accessible data often lacks consistency or 
does not reflect the full diversity of clinical cases. To 
overcome these challenges, it is essential to develop 

open repositories that are accessible to researchers. A 
major problem is the cost of maintaining these large-
scale data infrastructures. In addition, hospitals and 
health systems are often unwilling to share data for fear 
of data breaches and liability claims1. To overcome 
these challenges, better collaboration between research 
projects is urgently needed, especially with regard to 
data standardization and interoperability. A key issue 
is maintaining access to databases after individual proj-
ects have been completed - datasets become inacces-
sible, which affects the long-term impact of research. 

One promising solution is federated data sharing proj-
ects, which ensure that valuable datasets from com-
pleted projects remain available. One example of this 
approach is EUCAIM (European Federation for Cancer 
Images), which integrates and preserves cancer imaging 
data across multiple initiatives20,89. In addition, harmo-
nizing AI and data infrastructures between institutions 
and research projects will help reduce redundancy, 
improve efficiency, and accelerate progress in medical 
AI. By promoting a standardized, secure and collabora-
tive data ecosystem, researchers will be able to fully 
exploit the potential of AI and improve patient care and 
medical innovation20. Effective AI-driven healthcare 
research requires the integration and standardization  
of data from different domains. For example, it must be 

Figure 3. Feature selection is a two-step process: first, a low variance filter is applied to remove non-informative features. In the second step, 
an iterative approach is used to reduce dimensionality and redundancy. Pearson’s correlation to identify the most highly correlated pairs of 
features is combined with factorial analysis and Varimax rotation to maximize the squared variance of the weights to improve the interpretability 
of the features.
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ensured that imaging repositories are compatible with 
databases containing clinical, histopathology, and gene-
tic data. This is crucial for the development of a compre-
hensive AI-based CDSS. 

A potential solution is the development of an integra-
tion profile to create a standardized database structure 
that combines medical data in a uniform system. The 
first approach to integrating the DICOM standard (for 
images) with MIABIS (for biobanks) was the PRIMAGE 
project90. The new version of the MIABIS 3.0 standard-
ization addresses the issue of integrating data from 
biobanks with omics and image data91. By harmonizing 
multimodal medical data infrastructures, researchers 
can reduce fragmentation, improve data usability, and 
promote more efficient collaboration in the development 
of medical AI. Establishing a universal standard for the 
integration of different medical datasets will be critical 
to allow to full potential of AI in precision medicine.

Particularly important for the successful development 
of AI in medicine is the establishment of the FUTURE-AI 
initiative in 2021, an international consortium of 117 
experts, including AI specialists, clinicians, bioethicists, 
and social scientists from 50 countries. FUTURE-AI is 
a detailed set of principles and recommendations 
aimed at improving the safety, transparency and effec-
tiveness of AI in healthcare. The framework is based 
on six key principles that form the acronym FUTURE:

−  Fairness – tools should ensure equal performance 
for all patients. 

−  Universality – tools should be applicable in diffe-
rent clinical settings.

−  Traceability – tools should include mechanisms for 
documentation and monitoring.

−  Usability – tools should be intuitive and effective 
in clinical applications.

−  Robustness – tools should remain reliable despite 
variations in input data.

−  Explainability – tools should provide transparent 
and understandable decision-making processes. 

These guidelines are designed to accelerate the 
implementation of trustworthy AI in clinical practice and 
cover the entire lifecycle of AI, including design, devel-
opment, validation, deployment, and monitoring15.

CONCLUSION

The role of AI in oncology is rapidly evolving, partic-
ularly in image analysis. AI models based on deep 
learning are improving image preprocessing, segmen-
tation and data analysis, improving the accuracy of  

cancer diagnosis, prediction of response to treatment 
and patient prognosis. Studies consistently demonstrate 
the superiority of AI applications over traditional classi-
fication methods. The development of accurate AI tools 
relies on access to standardized, multimodal databases 
that facilitate better model training and validation. The 
next step is the implementation of AI-based CDSS that 
integrates image-derived features with other biomarkers 
and clinical data. However, before AI can be fully inte-
grated into daily practice, several challenges still need 
to be overcome. These include standardizing research 
methods, ensuring access to high-quality medical data, 
complying with regulatory requirements and increasing 
the transparency of algorithms to boost clinicians’ con-
fidence. The development of international initiatives to 
regulate and standardize AI research and implementa-
tion is critical to the safe and effective adoption of these 
technologies in medicine, ultimately enabling personal-
ized patient care and improved outcomes.
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ABSTRACT

Introduction: Lung point-of-care ultrasound (POCUS) has been useful in diagnosing neonatal respiratory disorders (NRDs); 
however, chest radiography (X-ray) is the most widely used imaging modality and the gold standard. This study aimed to 
determine the diagnostic performance of a new, shortened lung POCUS protocol compared with chest X-ray in NRD diag-
nosis. Materials and methods: This prospective cohort study was conducted from September 2023 to December 2024. 
Newborns from the neonatal intensive care unit (NICU) were consecutively included. A chest X-ray and a shortened lung 
POCUS protocol were performed. NRDs were recorded based on the imaging findings. The diagnostic performance of the 
shortened lung POCUS protocol was evaluated and compared with the gold standard, chest X-ray. Results: Sixty neonates 
were included; 14 (23.3%) had abnormal findings on chest X-ray, while 23 (38.3%) had abnormal findings on lung POCUS 
with the following NRD diagnoses: interstitial fluid overload (n = 9, 15.0%), respiratory distress syndrome (n = 7, 11.6%), pneu-
monia (n = 6, 10.0%), and transient tachypnea of the newborn (TTN) (n = 1, 1.6%). The shortened lung POCUS protocol  
had a sensitivity of 82.3% and a specificity of 79.1%, while chest X-ray had a sensitivity of 60.9% and a specificity of 91.9% 
for the diagnosis of NRDs in neonates in the NICU. Conclusion: This new shortened lung POCUS with an assessment of 
10 lung areas had a higher sensitivity (82.3%) than chest X-ray (60.9%) for the diagnosis of NRDs in neonates in the NICU. 
To our knowledge, this study is the first in Mexico that focuses on comparing the performance of these two imaging moda-
lities for diagnosing NRDs.

Keywords: Lung point-of-care ultrasound. Neonatal respiratory disorders. Neonatal intensive care unit. Diagnostic performance.

INTRODUCTION

Neonatal respiratory disorders (NRDs) are a leading 
cause of morbidity and mortality in neonates (0-7 days 
of life), with an incidence between 40 and 45% in neo-
natal intensive care units (NICUs)1-3. NRDs include pne-
umonia (42.8%), respiratory distress syndrome (20.8%), 
transient tachypnea of the newborn (TTN) (13.6%), 

meconium aspiration syndrome (7.9%), atelectasis 
(7.7%), and pneumothorax (2.8%)4-9. Chest radiography 
(X-ray) is the most widely used imaging method and the 
gold standard for diagnosing NRDs. However, it has 
some disadvantages, such as ionizing radiation expo-
sure10, which due to the small size of the neonate and the 
proximity to radiosensitive tissues and organs, increases 
their susce ptibility to radiation effects compared to other 
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age groups. There may also be false-positives, and lim-
itations in interpretation due to anatomical and technical 
characteristics11.

Neonatal point-of-care ultrasound (POCUS), first 
described in 1960, has been increasingly used over the 
last decade2. Lung POCUS allows real-time imaging 
without radiation exposure with high sensitivity in 
detecting lung abnormalities, such as B-lines, consoli-
dations, and the absence of A-lines10-14. Lung POCUS 
diagnostic accuracy varies from 82.7% to 100%2,4,7. 
The conventional lung POCUS protocol evaluates  
12 lung areas15, but its clinical implementation is com-
plex because it requires scanning multiple anatomic 
regions of the thorax in different positions (supine, 
prone, and lateral)16-18. This protocol may be impractical 
due to neonatal movement caused by crying, the pres-
ence of catheters, cannulas, tracheal tubes, and other 
medical devices that restrict mobility and access to 
some thoracic regions. Because of these limitations, 
we propose a new, shortened lung POCUS protocol for 
detecting NRDs that reduces neonatal manipulation. 
This study aimed to determine the diagnostic perfor-
mance of this new, shortened lung POCUS protocol 
compared to chest X-ray in NRDs diagnosis.

MATERIAL AND METHODS 

This prospective cohort study was conducted from 
September 2023 to December 2024 in the Department 
of Radiology and Imaging of the tertiary-care ISSSTE 
Hospital Regional Monterrey in Monterrey, Nuevo Leon, 
Mexico. Neonates aged 24 hours to 28 days admitted 
to the neonatal intensive care unit (NICU) were included. 
Neonates with thoracic surgery or skin conditions that 
prevented safe use of the ultrasound transducer were 
excluded. Informed consent was obtained from parents 
or guardians. The institutional research and research 
ethics committee approved the study.

Study development and variables

Neonates routinely admitted to the NICU were observed 
and assessed for at least 24 hours. Chest X-ray were 
routinely performed. The NRD diagnoses were based 
on chest X-ray findings and lung POCUS examination. 
Lung POCUS examination included variables such as 
the pleural line, A-line, B-line, white lung, consolidation, 
and the double lung point sign. 

Figure 1. Shortened lung POCUS protocol. A: examination starts on the right side in the anterior apical region with the transducer oriented 
longitudinally in front of the anterior axillary line of the thorax (number 1). It continues with the anterior basal region. The transducer is oriented 
longitudinally at the level of the nipple at the base of the lung (number 2). B: the right posterior apical region is examined with the transducer 
oriented longitudinally in the paravertebral region in the interscapulovertebral space towards the apical zone of the chest (number 3).  
The right posterior basal region is examined with the transducer oriented longitudinally at the level of the inferior scapular angle (number 4). 
C: the right lateral basal region is examined with the transducer oriented longitudinally at the level of the mid-axillary line at the base of the 
lung (number 5). This shortened lung POCUS protocol is performed in the same order (number 6, 7, 8, 9 and 10) on the left side.
POCUS: point-of-care ultrasound. 
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Figure 2. A healthy full-term neonate born by cesarean section at 39.5 weeks gestation with 24 hours of extrauterine life. A: a normal AP chest X-ray 
shows adequately expanded lungs with no abnormal findings. Umbilical catheter and electrodes are also visible. B: a normal lung POCUS shows a 
pleural line of normal thickness (white arrow) along with multiple A-lines (white arrowheads), which are typical findings in a normal lung. 
AP: anteroposterior; POCUS: point-of-care ultrasound; X-ray: radiography.

A B

Figure 3. Male preterm neonate born by cesarean section at 30 weeks gestation with 24 hours of extrauterine life with an NRD requiring endotracheal 
ventilation. A: AP chest x-ray shows diffuse bilateral alveolar opacities (white arrows). An endotracheal tube, feeding tube, and central venous 
catheter are seen with the catheter tip projecting at the cavoatrial junction. B: lung POCUS of the left posterior-inferior quadrant shows loss of 
normal pleural line morphology and echogenicity due to subpleural focal atelectasis (white arrows) and an increased number of B-lines forming a 
“white lung pattern” (white arrowheads). C: lung POCUS of the right posterior-inferior quadrant shows a pleural line with normal echogenicity and 
thickness (white arrow), the presence of B-lines (white arrowhead), and preserved A-lines with a normal appearance (black arrow). The diagnosis 
was subpleural atelectasis on chest X-ray and shortened lung POCUS. 
AP: anteroposterior; NRD: neonatal respiratory disorder; POCUS: point-of-care ultrasound; X-ray: radiography.
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longitudinally at the level of the nipple at the base of 
the lung (number 2). The right posterior apical region 
is examined with the transducer oriented longitudinally 
in the paravertebral region in the interscapulovertebral 
space towards the apical region of the chest (Figure 1B) 
(number 3). The right posterior basal region is exam-
ined with the transducer oriented longitudinally at the 
level of the inferior scapular angle (number 4). The right 
lateral basal region is examined with the transducer 
oriented longitudinally at the level of the mid-axillary 
line at the base of the lung (Figure 1C) (number 5). This 
protocol is performed on the left side in the same order 
(numbers 6, 7, 8, 9, and 10). 

Statistical analysis

Numerical variables are described with measures of 
central tendency and dispersion. Categorical variables 
as absolute numbers and percentages. A receiver oper-
ating characteristic (ROC) curve assessed the discri-
minatory ability of a dichotomous diagnosis. Sensitivity, 
specificity, positive predictive value (PPV), negative  

New shortened lung POCUS protocol

Acuson NX3 equipment (Siemens Healthineers, 
Erlangen, Germany) with a linear transducer of 5-13 MHz 
was used. The technical parameters, previously described 
by Liu et al.9, were (a) 4-5 cm depth, (b) 1-2 focal zones 
close to the pleural line, (c) fundamental frequency imag-
ing, (d) 2-3 speckle reduction imaging (SRI), (e) spatial 
compounding function (SCF), (f) and a time-gain compen-
sation (TGC) setting. A pediatric radiologist (SET) with 
11 years of experience assessed the chest X-ray and 
the shortened lung POCUS protocol. 

The new, shortened lung POCUS protocol proposed 
by the author (SET) consists of assessing 10 areas in 
the thorax bilaterally at the anterosuperior, anteroinfe-
rior, lateral, posterosuperior, and posteroinferior levels, 
as described below.

Examination starts on the right side in the anterior 
apical region with the transducer oriented longitudinally 
in front of the anterior axillary line in the apical region 
of the thorax (Figure 1A) (number 1). It continues with 
the anterior basal region, with the transducer oriented 

Figure 4. Full-term neonate at 37 weeks gestation with 5 days of extrauterine life with an NRD and fever. A: AP chest X-ray shows an area of 
consolidation in the right middle lobe (white arrow) with air bronchograms (white arrowhead). There are more areas of consolidation in the lingula 
and the posterior segment of the left lower lobe (black arrowheads) with air bronchograms (black arrowhead). A central venous catheter with a tip 
at the cavoatrial junction and an orogastric tube and electrodes can be seen. B: lung POCUS of the right anterior upper quadrant with pleural line 
thickening (white arrow) next to the consolidation area (white arrowhead). C: lung POCUS of the left hemithorax in the lateral quadrant with a focal 
subpleural parenchymal consolidation (white arrowhead) with air bronchograms (white arrows). Hepatization of the lung parenchyma was noted. 
D: lung POCUS, with color Doppler showing vascular flow in the same area of consolidation. E: lung POCUS of the left posterior upper quadrant 
showing pleural line thickening (white arrow) and increased B-lines corresponding to a "white lung pattern" (white arrowhead). The diagnosis was 
pneumonia on the chest X-ray and shortened lung POCUS.
AP: anteroposterior; NRD: neonatal respiratory disorder; POCUS: point-of-care ultrasound; X-ray: radiography.
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Figure 5. Full-term male neonate born by cesarean section at 38 weeks gestation with 24 hours of extrauterine life with an NRD and clinical suspicion 
of TTN. A: AP chest X-ray showing adequately expanded lung fields with no pathologic abnormalities. An endotracheal tube, an umbilical catheter 
and a gastric tube are visible. B: lung POCUS of the left posterior-inferior quadrant shows an increased number of B-lines resulting in a "white lung" 
appearance (wet lung pattern) (white arrows), along with obliteration of the A-lines, a finding consistent with interstitial fluid overload. C: lung POCUS 
of the left anterior-inferior quadrant with preserved A-lines (white arrows) and normal appearance of the pleural line (white arrowhead), consistent 
with a normal ultrasound pattern. The chest X-ray was normal. Shortened lung POCUS diagnosis was interstitial fluid overload.
AP: anteroposterior; NRD: neonatal respiratory disorder; POCUS: point-of-care ultrasound; TTN: transient tachypnea of the newborn; X-ray: radiography.

A B

C

Figure 6. Preterm male neonate born at 32 weeks gestation with 24 hours of extrauterine life. A: AP chest X-ray showing normal lung fields. An 
umbilical catheter, electrodes and a feeding tube are seen. B: lung POCUS of the anterior and lower right quadrant shows a focal increase in B-lines 
(white arrow) with preservation of A-lines (white arrowheads), which together form the double lung point sign. C: lung POCUS of the anterior and 
lower left quadrant shows a focal increase of the B-lines (white arrow) with preservation of A-lines (white arrowheads) which together form the 
double lung point sign. The chest X-ray was normal. Shortened lung POCUS diagnosis was TTN.
AP: anteroposterior; POCUS: point-of-care ultrasound; TTN: transient tachypnea of the newborn; X-ray: radiography.
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predictive value (NPV), and accuracy were calculated  
to determine the diagnostic performance of the short-
ened lung POCUS protocol compared to chest X-ray as  
the gold standard, and chest X-ray with the shortened 
lung POCUS protocol as the gold standard. Agreement 
between lung POCUS findings and chest X-ray findings 
was assessed with Cohen´s kappa coefficient. The 95% 
confidence interval (CI) was calculated and a value of  
p < 0.05 was significant. Data analysis was performed 
with SPSS v.25.0 (IBM Corp., Armonk NY, USA). 

RESULTS

Sixty neonates were included, 27 (45.0%) females 
and 33 (55.0%) males. The mean gestational week was 
35.4 ± 2.5. Forty-four (73.3%) were preterm neonates 
with a mean gestational week of 34.5 ± 2.0; 16 (26.7%) 
neonates were term with a mean gestational week of 
38.4 ± 0.8. The mean chronological age of the neo-
nates at which the shortened lung POCUS protocol was 
performed was 36.8 ± 48.9 hours. In neonates without 
an NRD diagnosis, the examination was performed on 
average at 24 hours of life. In contrast, neonates with 
an NRD, lung POCUS was performed with a mean at 
57.3 ± 75.4 hours. 

Chest X-ray and lung POCUS findings 
in 23 neonates with NRDs

Abnormal chest X-ray findings were found in 14 (23.3%) 
of 60 neonates, while 23 (38.3%) had abnormal lung 
POCUS findings (Table 1). Of the 23 neonates with lung 
POCUS abnormalities, 18 (78.3%) were preterm and 5 
(21.7%) were term.

The chest X-ray and lung POCUS were normal in  
34 (56.7%) of the 60 neonates. Figure 2 shows a nor-
mal chest X-ray and lung POCUS of a healthy full-term 
neonate at 39.5 gestational weeks and 24 hours of 
extrauterine life. The AP chest X-ray shows adequately 
expanded lungs. The lung POCUS shows a pleural line 
of normal thickness along with several A-lines, typical 
findings of a normal lung.

Nine (15.0%) neonates with an abnormal lung  
POCUS had a normal chest X and only 3 (5.0%) with 
an abnormal chest X ray had a normal lung POCUS. 
In 14 (23.3%) neonates, the chest X ray and the lung 
POCUS were abnormal. The agreement between chest 
X-ray and lung POCUS was k = 0.555 (95% CI 0.330-
0.780) (p < 0.001). Diagnostic NRDs were interstitial
fluid overload (n = 9, 15.0%), respiratory distress syn-
drome (n = 7, 11.6%), pneumonia (n = 6, 10.0%), and
TTN (n = 1, 1.6%).

Abnormal lung POCUS findings in 
23 neonates with NRDs 

The lung POCUS findings highlight ultrasound pat-
terns indicating respiratory impairment in more than 
one third of neonates, with a predominance of signs 
consistent with interstitial fluid overload and pneumo-
nia, such as white lung disease (n = 13, 56.5%) and 
consolidation (n = 10, 43.4%). In 55 (91.7%) of 60 neo-
nates, the lung POCUS showed a normal pleural line, 
and in 5 (8.3%), it was thickened (Table 2).

Figure 3 shows a male preterm neonate born at 30 
weeks gestation with 24 hours of extrauterine life with 
NRD requiring endotracheal ventilation. The chest 
X-ray shows bilateral alveolar opacities. Lung POCUS
of the left posterior-inferior quadrant shows a loss of
normal morphology and echogenicity of the pleural line
due to subpleural focal atelectasis and an increased

Table 3. Diagnostic performance of shortened lung POCUS compared 
to chest X-ray as the gold standard for diagnosing NRDs in the NICU 

Description Parameter

Sensitivity, % (95% CI) 82.3 (56.6-96.2)

Specificity, % (95% CI) 79.1 (64.0-90.0)

PPV, % (95%CI) 70.7 (56.4.-81.8)

NPV, % (95% CI) 88.0 (72.1-95.4)

Accuracy, % (95% CI) 80.3 (68.0-89.5)

POCUS: point-of-care ultrasound; NRDs: neonatal respiratory disorders; 
NICU: neonatal intensive care unit; CI: confidence interval; PPV: 
positive predictive value; NPV: negative predictive value. 

Table 2. Abnormal shortened lung POCUS findings in 23 neonates with 
NRDs in the NICU

Description n (%)

Thickened pleural line 5 (21.7)

Absence of A line 17 (73.9)

Presence of B line 20 (86.9)

Consolidation 10 (43.4)

White lung 13 (56.5)

Double lung point 1 (4.3) 

aSome neonates had two or more findings.
POCUS: point of care ultrasound; NRDs: neonatal respiratory 
disorders; NICU: neonatal intensive care unit.
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Table 4. Diagnostic performance of chest X-ray compared to short-
ened lung POCUS as the gold standard for diagnosing NRDs in neo-
nates in the NICU

Description Parameter

Sensitivity, % (95% CI) 60.9 (38.5-80.3)

Specificity, % (95% CI) 91.8 (78.0-98.3)

PPV, % (95%CI) 82.1 (59.7-93.5)

NPV, % (95% CI) 79.3 (69.5-86.5)

Accuracy, % (95% CI) 80.1 (67.8-89.3)

POCUS: point-of-care ultrasound; NRDs: neonatal respiratory disorders; 
NICU: neonatal intensive care unit; CI: confidence interval; PPV: 
positive predictive value; NPV: negative predictive value.
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Sensitivity: 82.3% (95% CI, 56.6-96.2)
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Figure 7. ROC curve showing the diagnostic performance of the shortened 
lung POCUS protocol in 60 neonates with NRDs. The shortened lung 
POCUS protocol discriminates cases with and without NRDs with a high 
AUC value (0.807, 95% CI 0.680-0.934).
AUC: area under the curve; NRDs: neonatal respiratory disorders; POCUS: point-
of-care ultrasound; ROC: receiver operating characteristic. 

number of B-lines forming a “white lung pattern”. The 
diagnosis was subpleural atelectasis on chest X-ray 
and lung POCUS. 

Figure 4 shows a full-term neonate at 37 weeks  
gestation with 5 days of extrauterine life presenting an 
NRD and fever. The chest X-ray shows bilateral consoli-
dation with air bronchograms, lung POCUS of the right 
quadrant with consolidation and a thickened pleural 
line. The lateral quadrant in the left hemithorax shows 

focal subpleural parenchymal consolidation with air 
bronchogram and vascular flow in the consolidation 
area. Hepatization of the lung parenchyma was noted. 
The left posterior upper quadrant shows thickening of 
the pleural line and increased B-lines corresponding to 
a “white lung pattern”. The diagnosis was pneumonia 
on chest X-ray and shortened lung POCUS.

Figure 5 shows a full-term male neonate born at 38 
weeks gestation with 24 hours of extrauterine life with 
an NRD and clinical suspicion of TTN and a normal 
chest X-ray. Lung POCUS of the left posterior-inferior 
quadrant showed an increased number of B-lines 
resulting in a “white lung” (wet lung pattern), along with 
obliteration of the A-lines, a finding consistent with 
interstitial fluid overload.

Figure 6 shows a preterm male neonate born at 32 
weeks gestation with 24 hours of extrauterine life. A 
normal chest X-ray is normal. Lung POCUS of the ante-
rior and lower right quadrant shows a focal increase in 
B-lines with preservation of A-lines which together form
the double lung point sign. The anterior and lower left
quadrant show a focal increase in B-lines with preser-
vation of A-lines which together form the double lung
point sign. TTN was the diagnosis of the shortened
lung POCUS.

Diagnostic performance of lung POCUS 
for diagnosing NRDs compared to chest 
X-ray as the gold standard

The shortened lung POCUS protocol showed a
sensitivity of 82.3% and a specificity of 79.1% for diag-
nosing NRDs in neonates in the NICU (Table 3). There 
were 3 false-negatives, 9 false-positives, 14 true-posi-
tives, and 34 true-negative lung POCUS results. The 
PPV was 70.7%, while the NPV was 88.0%. The accu-
racy was 80.3%. The area under the curve in the ROC 
was 0.807 (95% CI 0.680-0.934) (Figure 7). 

Diagnostic performance of chest X-ray 
for diagnosing NRDs compared to  
lung POCUS as the gold standard

The chest X-ray showed a sensitivity of 60.9% and a 
specificity of 91.8% for diagnosing NRDs in neonates 
(Table 4). There were 9 false-negatives, 3 false- 
positives, 14 true-positives and 34 true-negative results 
on chest X-ray. The PPV was 82.1%, while the NPV 
was 79.3%. The accuracy was 80.1%.
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total of 12 in both lungs. This conventional lung ultra-
sound is currently used for evaluation in neonates. In 
2025, Dong et al.21 proposed another lung POCUS pro-
tocol with 14 lung areas in which the parasternal region 
and adjacent to the spine were added. The study 
included 89 Chinese neonates with respiratory distress 
syndrome comparing the 12-area protocol with a 14-area 
protocol using chest X-ray as the gold standard. The 
14-area showed higher diagnostic performance (sensi-
tivity of 94.0% and specificity of 91.0%) than the 12-area
protocol (sensitivity of 91.0% and specificity of 64.0%).
Chest X-ray had a sensitivity of 88.0% and a specificity
of 64.0%. This study demonstrated that more extensive
protocols are better for the assessment of neonates with
respiratory distress syndrome. However, the practical
application of these protocols can have limitations in
their implementation in NICU because neonates usually
have several external auxiliary devices such as venous
catheters, probes, electrodes, and ventilatory support,
among others. Our shortened lung POCUS protocol
examines a total of 10 anatomical areas of the chest with
a reduction in the manipulation of neonates which sim-
plifies the procedure and may be less invasive for the
neonate. However, its diagnostic performance is lower
than the conventional lung POCUS protocol.

The strengths of this study are related to the imaging 
modality, which is accessible, non-invasive, and low 
cost. The new, shortened lung POCUS protocol reduces 
neonatal manipulation and is described in detail, so it is 
reproducible. On the other hand, the study has limita-
tions, such as the small sample size, the lack of clinical 
data, and the fact that interobserver and intraobserver 
agreement was not assessed.

CONCLUSION

In this study, a new shortened lung POCUS protocol 
showed better diagnostic performance than chest X-ray 
for the diagnosis of NRDs in a NICU. However, diag-
nostic performance was lower than the conventional 
lung POCUS protocol in the assessment of neonates 
with an NRD. Studies with larger populations using the 
shortened lung POCUS protocol in the NICU are 
needed to determine its potential role as a diagnostic 
tool in diagnosing NRDs.
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DISCUSSION

The new shortened lung POCUS protocol that assesses 
10 lung areas showed a higher sensitivity (82.3%) than 
chest X-ray (60.9%) for diagnosing NRDs in neonates in 
the NICU. Lung POCUS examination in neonates has the 
advantage of providing real-time imaging, no ionizing 
radiation, and can be performed at the patient’s bedside. 
To our knowledge, this study is the first in Mexico that 
focuses on comparing the diagnostic performance of 
these two imaging modalities for NRDs in neonates.

Lung POCUS has been shown to have high accuracy 
in the diagnosis and follow-up of NRDs3,19. In this study, 
the new, shortened lung POCUS protocol showed a 
higher sensitivity (82.3%) than chest X-ray (60.9%), while 
specificity was 79.1% and 91.9%, respectively. Ismail 
et  al.3 reported the diagnostic performance of a con-
ventional lung POCUS protocol in 100 neonates in a 
cross-sectional study in Egypt. The sensitivity and speci-
ficity of lung POCUS in diagnosing respiratory distress 
syndrome was 94.7/100%, for pneumonia, 97.5/95.0%, 
for meconium aspiration syndrome, 92.3/100%, for 
pneumothorax, 90.9/98.9% and for pulmonary atelecta-
sis, 100/97.0%. The overall agreement between lung 
POCUS and chest X-ray was 98.5% (95% CI 0.88 to 
0.92). Gupta et al.19 conducted a cross-sectional study 
in India of 244 neonates in the NICU, 77 (31.5%) had 
NRDs. They were examined by the conventional lung 
POCUS and chest X-ray. For the diagnosis of respiratory 
distress syndrome, the sensitivity and specificity of lung 
POCUS were 87.7% and 89.2%, while chest X-ray was 
81.6% and 96.4%, respectively. For TTN diagnosis, the 
sensitivity and specificity of lung POCUS were 91.6% 
and 90.5%, while chest X-ray was 79.1% and 98.1%, 
respectively. In a prospective single-center study in Italy, 
Corsini et al.20 examined 196 neonates in the NICU, 124 
(63.3%) had respiratory distress syndrome. The agree-
ment between chest X-ray and conventional lung POCUS 
was almost perfect (k = 0.88, 95% CI 0.81-0.94). In our 
study, the agreement between chest X-ray and lung 
POCUS was moderate (k = 0.555, 95% CI 0.330-0.780) 
(p < 0.001). Although our new, shortened lung POCUS 
protocol had better sensitivity than chest X-ray for diag-
nosing NRDs, it was lower than in other reports using 
the conventional lung POCUS protocol.

In 2004, Lichtenstein15 proposed a protocol for lung 
evaluation that consisted of dividing the lung into 3 seg-
ments (anterior, lateral, and posterior). Each segment is 
divided into superior and inferior, with 6 areas per lung 
(anterior-superior, anterior-inferior, superior lateral, infe-
rior lateral, posterosuperior and posteroinferior), giving a 
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ABSTRACT

Introduction: Dolichoarteriopathies of the extracranial internal carotid artery (EICA) are anatomical variants of the arterial 
course associated with alterations in the geometry and tortuosity of the vessel course. The reported prevalence varies widely, 
ranging from 10% to 70% in different studies. This study aimed to determine the prevalence of EICA dolichoarteriopathy types 
and subtypes in Mexican patients using neck computed tomography angiography (CTA). Material and methods: This 
cross-sectional study was conducted in patients who underwent neck CTA scans based on the referring physician´s clinical 
indication. An EICA dolichoarteriopathy variant was determined by reviewing CTA images in the axial, coronal, and sagittal 
planes. Laterality, type of dolichoarteriopathy (tortuosity, coiling, or kinking), and the kinking subtype were defined. Results: 
Two hundred seventy-one patients, 136 (50.2%) women and 135 (49.8%) men, were included. EICA dolichoarteriopathies 
were found in 151 of 271 patients with a prevalence of 55.7%. Dolichoarteriopathies were more common in older patients  
(p < 0.001). More than one type or subtype of EICA dolichoarteriopathies was found. Thus, 275 variants were found in 151 
patients, with a comparable distribution on the right and left sides. Tortuosity was the most common type (n = 198, 72.0%), 
followed by kinking (n = 41, 14.9%) and coiling (n = 36, 13.1%). The subtypes were kinking A, 5.1% (n = 14), kinking B, 7.7% 
(n = 21), and kinking C, 2.2% (n = 6). Conclusion: We found a high prevalence (55.7%) of EICA dolichoarteriopathies. These 
were more frequent in older Mexican patients, and tortuosity was the most common. This study is the first to investigate the  
prevalence of types and subtypes of EICA dolichoarteriopathies in Mexican patients using neck CT.

Keywords: Head and neck. Anatomy. Internal carotid artery. Prevalence study. Vascular diseases. Helical computed tomography.

INTRODUCTION

Dolichoarteriopathies of the extracranial internal 
carotid artery (EICA) are morphologic arterial course 
variations associated with changes in the geometry and 
twisting of the vessel1,2. The term originates from the 
Greek words “dolichos”, meaning “abnormally long,” and 
“ektasis,” meaning “distention” or “dilatation.” They were 
first described by Kelly in 19253. Despite their clinical 

importance as a non-atherosclerotic factor contributing 
to reduced cerebral blood flow, these changes have not 
been fully studied1. This importance stems from the cru-
cial role the internal carotid arteries play in supplying 
oxygenated blood to the brain4,5.

Although EICA dolichoarteriopathies can be asymp-
tomatic, some are associated with reduced cerebral 
blood flow, particularly when accompanied by athero-
matous plaques5,6. Patients can present symptoms 
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such as hypoglossal nerve compression, decreased 
cognitive abilities, neuropsychological developmental 
delays, focal or generalized seizures, transient isch-
emic attacks (TIAs), hemiparesis, amaurosis fugax, and 
ischemic vascular events6,7,8. Dolichoarteriopathies are 
also associated with ischemic complications and vas-
cular injury during surgical procedures1. Metz et al.9 
classified EICA dolichoarteriopathies into three types: 
tortuosity, coiling, and kinking. Tortuosity refers to the 
elongation and curvature of the arteries, typically in a 
C or S shape. Coiling refers to elongation that forms 

exaggerated shapes such as a C, U, or S, or circular 
configurations with a 360° twist. Kinking refers to  
an acute angulation of the artery, typically less than  
90°5,7,9-11. The kinking severity correlates with cerebral 
blood flow reduction and is categorized according to 
the degree of EICA angulation: Grade I, also known as 
mild or Grade A (61-90°), with a minimal hemodynamic 
impact; Grade II, also known as moderate or Grade B 
(31-60°), which reduces blood flow by 40%, and Grade 
III, also known as severe or grade C kinking (≤ 30°), 
which results in a 60% reduction and an increased risk 
of ischemic complications7.

EICA dolichoarteriopathies are identified with imag-
ing techniques such as neck ultrasound, digital subtrac-
tion angiography, magnetic resonance imaging (MRI), 
and computed tomography angiography (CTA)7. The 
latter has the advantage of accessibility, allowing rapid 
acquisition and providing excellent anatomical images, 
especially with volume rendering (VR). It allows a 360° 
assessment, contributing to better classifying the dif-
ferent types, and facilitating angle measurement. Unlike 
ultrasound, it is not influenced by neck width or length12. 
Although EICA dolichoarteriopathies are thought to be 
common in the general population, their prevalence 
varies from 10% to 70% in different studies5,12,13. While 
kinking is often considered the most common type7, its 
occurrence is estimated at 5-25%2. However, recent 
studies suggest that tortuosity is more common2. No 
study has determined the prevalence and distribution 
of EICA dolichoarteriopathies in the Mexican popula-
tion. This study determined the prevalence, types, and 
subtypes of EICA dolichoarteriopathies in Mexican 
patients using neck CTA.

MATERIAL AND METHODS 

This cross-sectional study was conducted between 
August 2021 and August 2024 at the Department  
of Radiology, High Specialty Medical Unit No. 71  
in Torreon, Coahuila, Mexico. Patients of both sexes, 
aged 0 to 99, who underwent neck CTA based on the 
clinical indication of their referring physician were 
included. Exclusion criteria were patients with carotid 
stents or changes due to endarterectomy, no available 
neck CTA reports in PACS (Picture Archiving and 
Communication System), and studies with incomplete 
data. Elimination criteria were studies that showed 
head rotation, flexion, or extension relative to the neck, 
neck CTA scans that did not fully cover the region of 
interest, and CTA scans with artifacts that prevented 

Table 1. Characteristics of 271 Mexican patients and prevalence of 
EICA dolichoarteriopathies identified by neck CTA

Characteristic n = 271

Sex

Women, n (%) 136 (50.2%)

Men, n (%) 135 (49.8%)

Age, years, mean ± SD 44.0 ± 20.7

Age groups, years

0-16, n (%) 36 (13.3)

17-59, n (%) 159 (58.7)

60 and older, n (%) 76 (28.0)

EICA dolichoarteriopathy

Yes, n (%) 151 (55.7)

No, n (%) 120 (44.3)

EICA: extracranial internal carotid artery; CTA: computed tomography 
angiography; SD: standard deviation.

Table 2. Association between age and EICA dolichoarteriopathies by 
neck CTA in Mexican patients 

Description Total Dolichoarteriopathy p

Yes No

n 271 151 120

Age group < 0.001a

0-16 years, n (%) 36 (13.3) 12 (7.9) 24 (20.0)

17-59 years, n (%) 159 (58.7) 86 (57.0) 73 (60.8)

60 years and 
older, n (%)

76 (28.0) 53 (35.1) 23 (19.2)

aOlder age was significantly associated with EICA dolichoarteriopathies. 
EICA: extracranial internal carotid artery; CTA: computed tomography 
angiography.
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correct image interpretation. Informed consent was not 
required because the data were collected as part of 
routine medical care. The institutional research and 
research ethics committees approved the study.

Study description and variables

Variables included sex, age, presence of an EICA 
dolichoarteriopathy, laterality, type (tortuosity, coiling, 
and kinking), and kinking subtype according to Metz 
classification9: an angulation of 90-60° defines subtype 
A (mild or grade I); an angulation of 60-30° subtype B 

Table 3. EICA dolichoarteriopathies laterality, types, and subtypes in 
151 Mexican patients by neck CTA

Description n = 275a

EICA dolichoarteriopathyb

Right, n (%) 132 (48.0%)

Left, n (%) 143 (52.0%)

Type 

Tortuosity, n (%) 198 (72.0)

Coiling, n (%) 36 (13.1)

Kinking, subtypes, n (%) 41 (14.9)

Kinking A 14 (5.1)

Kinking B 21 (7.7)

Kinking C 6 (2.2)

aTotal number of anatomical variants found in the 151 patients  
with EICA dolichoarteriopathies; bBilateral involvement was found in 
203 (73.8%) of 275 variants, as some patients had more than one type 
or subtype of EICA dolichoarteriopathy. EICA: extracranial internal 
carotid artery; CTA: computed tomography angiography.

(moderate or grade II), and an angulation less than 30° 
subtype C (severe or grade III). The age groups were 
0-16, 17-59, and 60 years and older.

Image acquisition and analysis

Neck CTA scans were performed with a GE 
RevolutionTM EVO CT scanner (GE HealthCare Co., 
Waukesha, WI, USA) with the head in a neutral position 
(no flexion, extension, or rotation). CTAs were evaluated 
by a radiologist (HSM) with 15 years of experience and 
two radiology trainees (DCO and SGO). The EICA doli-
choarteriopathy variant was identified by reviewing  
arterial phase images in the axial, coronal, and sagittal 
planes. The degree of kinking was measured by delin-
eating parallel lines along the long axes of the proximal 
and distal segments of the EICA, with the angle of inter-
section corresponding to the measurement. If there was 
uncertainty regarding the type or subtype, VR recon-
structions were performed. The baseline examination 
was used in patients with multiple CTA examinations.

Statistical analysis 

The sample size was estimated based on the 
assumption that the prevalence of dolichoarteriopathies 
in the population is 30%5,13. Using the formula for esti-
mating the expected proportion in a known population 
(1,644 neck CTA examinations), the sample size was 
271 individuals with a confidence level of 95% and a 
margin of error of 5%. Results are presented using 
measures of central tendency and dispersion for quan-
titative variables and absolute frequency counts and 
corresponding percentages for categorical variables. 
Differences in proportions between categorical vari-
ables were assessed using the chi-square test. A  
p < 0.05 was considered statistically significant. SPSS 
version 24 (IBM Corp., Armonk, NY, USA) was used for 
the statistical analysis.

RESULTS

Two hundred seventy-one patients who underwent 
neck CTA were screened for EICA dolichoarteriopa-
thies (Table 1); 50.2% (n = 136) were women and 49.8% 
(n = 135) were men with an age range of 8 months to 
86 years; 13.3% (n = 36) were 0 to 16, 58.7% (n = 159) 
were between 17 and 59, and 28.0% (n = 76) were  
60 years or older. EICA dolichoarteriopathies were 
found in 151 of 271 patients with a prevalence of 55.7%.

Table 4. EICA dolichoarteriopathy laterality diagnosed by neck CTA 
concerning type and subtype 

Description Total  
n = 275

Laterality p

Right  
n = 132

Left  
n = 143

Tortuosity, n (%) 198 (72.0) 98 (49.5) 100 (50.5) 0.368

Coiling, n (%) 36 (13.1) 12 (33.3) 24 (66.7) 0.062

Kinking, subtypes,  
n (%)

41 (14.9) 22 (46.8) 19 (53.2) 0.416

Kinking A 14 (5.1) 8 (57.1) 6 (42.9) 0.473

Kinking B 21 (7.7) 11 (52.4) 10 (47.6) 0.663

Kinking C 6 (2.2) 3 (50.0) 3 (50.0) 0.914

EICA: extracranial internal carotid artery; CTA: computed tomography 
angiography.
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Association between age and EICA 
dolichoarteriopathies detected by neck 
CTA in Mexican patients 

Significant differences were found regarding age. 
EICA dolichoarteriopathies were more frequent in older 
age groups (Table 2). In the 0-16 age group, 12 (7.9%) 
of 36 patients had an EICA dolichoarteriopathy, while 24 
(20%) did not. In the 17-59 age group, 86 (57.0%) had 
an EICA dolichoarteriopathy, while 73 (60.8%) did not. 
In the 60 years and older group, 53 (35.1%) had an EICA 
dolichoarteriopathy, while 23 (19.2%) did not (p < 0.001).

EICA dolichoarteriopathy laterality, types, 
and subtypes by neck CTA

The anatomical variant distribution was analyzed 
(Table 3). A total of 275 variants were found in 151 
patients, with a similar distribution observed on both 
sides. One hundred and thirty-two (48.0%) of 275 were 
right-sided and 143 (52.0%) were left-sided, with no sig-
nificant difference in laterality. In addition, 203 (73.8%) 

of 275 variants were bilateral, with more than one type 
or subtype of EICA found in some patients. The most 
common type was tortuosity with 72.0% (n = 198) of  
the 275 variants; 13.1% (n = 36) were coilings, and  
14.9% (n = 41) were kinkings. The kinking subtypes  
were kinking A, 5.1% (n = 14), kinking B, 7.7% (n = 21), 
and kinking C, 2.2% (n = 6). Figures 1 and 2 show the 
neck CTA examinations of the three EICA dolichoarteri-
opathy types. Figures 3, 4, and 5 show the A, B, and C 
kinking subtypes.

EICA dolichoarteriopathy laterality 
according to type and subtype by neck 
CTA

EICA dolichoarteriopathy laterality was analyzed by 
type and subtype (Table 4). The prevalence of tortuos-
ity was comparable on the right and left sides, while 
coiling and kinking were slightly more common on the 
left side (n = 24, 66.7% and n = 19, 53.2%, respectively) 
than on the right side (n = 12, 33.3% and n = 22, 46.8%, 
respectively). In contrast, the kinking subtypes A and B 

Figure 1.  Neck CTA examinations showing different EICA dolichoarteriopathy types. A: coronal neck CTA reconstruction from a 41-year-old 
man showing tortuosity type in the right (yellow arrowhead) and left (blue arrowhead) EICA. B: coronal-oblique CTA reconstruction from a 
23-year-old man with coiling type of the left EICA (red arrowhead). C: a sagittal CTA reconstruction from a 47-year-old woman showing kinking 
type of the left EICA (green arrowhead). 
CTA: computed tomography angiography; EICA: extracranial internal carotid artery.

A B C
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were more common on the right side (n = 8, 57.1% and 
n = 11, 52.4%, respectively) than on the left (n = 6, 42.9% 
and n = 10, 47.6%, respectively). The differences in 
laterality between the different EICA dolichoarteriopa-
thy types and subtypes were not significant. Kinking 
subtype C occurred equally on both sides.

DISCUSSION 

This study showed a high prevalence (55.7%) of EICA 
dolichoarteriopathies on neck CTA examination, with 
older patients being more frequently affected than 
younger ones, and tortuosity type being more frequent. 
To our knowledge, this study is the first in Mexico to deter-
mine the prevalence and distribution of types and sub-
types of vascular variants of EICA dolichoarteriopathies.

Previous studies have shown that EICA dolichoarte-
riopathies are common in the general population. 
However, their prevalence varies from series to series. 
Pellegrino et al.13 reported a prevalence of 25.9% in 
1220 Italians aged 25 to 89 using color Doppler US. Di 
Pino et al.5 observed a variable frequency between 

10% and 45% in a cohort of 2856 Italians aged 0 to 96. 
They also studied patients with color Doppler US. In 
contrast, Barfzadeh et al.12 reported a higher preva-
lence of 70.3% in 106 Iranian patients examined by 
neck CTA. In our study, the prevalence of EICA doli-
choarteriopathies in 271 Mexican patients was 55.7% 
(n = 151), exceeding the prevalence in the Italian pop-
ulation but lower than in the Iranian population. No 
significant difference was found in the frequency of 
dolichoarteriopathies by sex, unlike the Italian popula-
tion, where most variants were found in women over  
60 years of age—a finding they attributed to possible 
hormonal factors14. Moreover, no preference for one 
side was found among types and subtypes, unlike 
Sacco et al.14 who found more variants in the left arter-
ies (61.5%) than in the right arteries (38.5%). The prev-
alence of EICA dolichoarteriopathies by neck CTA in 
our study was higher than in some international studies. 
This finding could be due to differences in imaging 
techniques or population characteristics. 

Regarding age, previous reports by Metz et al.9  
and Barfzadeh et al.12 found an association between 

Figure 2.  Frontal views of neck CTA VR reconstructions showing different EICA dolichoarteriopathy types. A: the right EICA of a 23-year-old 
man shows no dolichoarteriopathy (arrowhead). B: tortuosity type in the left EICA and C: kinking type in the right EICA of a 78-year-old woman 
(arrowheads). D: coiling type in the right EICA (arrowhead) of an 83-year-old woman with the vessel rotating 360° around its axis, characteristic 
of this morphology.
EICA: extracranial internal carotid artery; CTA: computed tomography angiography; VR: volume rendering.
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(p = 0.001), which is consistent with the literature, 
where there is a significant association of these vari-
ants with advanced age14, supporting the idea that 

advancing age and increased arterial elongation and 
tortuosity. Our study showed a significant association 
between advanced age and EICA dolichoarteriopathies 

Figure 3.  A: reconstruction of a neck CTA in the sagittal plane from 
a 74-year-old woman patient with kinking subtype A of EICA doli-
choarteriopathy showing an angle less than 90° but more than 60° 
(arrowhead). B: magnified view with a measured angle of 62 degrees, 
classified as a grade I kinking subtype.
CTA: computed tomography angiography; EICA: extracranial internal carotid 
artery.

A

B

Figure 4.  A: reconstruction in the sagittal plane of a neck CTA in a 
64-year-old woman with grade II kinking of the EICA, a subtype of 
dolichoarteriopathy defined by an angulation between 30° and 60° 
(arrowhead). B: a magnified view with an angle measurement of 50 
degrees, classified as a grade II kinking subtype.
CTA: computed tomography angiography; EICA: extracranial internal carotid 
artery.

A

B
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arterial elasticity, and degenerative changes in the ves-
sel wall over time14. EICA dolichoarteriopathies have 
also been observed in the 0-16 age group, suggesting 
that there may be a congenital abnormality that resolves 
with somatic growth and re-emerges with age due to 
vascular remodeling.

The classification of EICA dolichoarteriopathy types 
is consistent across studies; however, the reported fre-
quencies vary considerably. In our study, tortuosity was 
the most frequent type of EICA dolichoarteriopathy, 
accounting for 72.0% (n = 198) of the 275 variants, 
followed by kinking (n = 41, 14.9%) and coiling (n = 36, 
13.1%). This distribution differs from previous literature. 
For example, in a study of 1217 Italian patients exam-
ined by ultrasound, Sacco et al.14 identified 437 affected 
arteries, with kinking being the most common variant 
(54.0%), followed by tortuosity (44.6%) and coiling 
(1.4%). Such discrepancies may be due to differences 
in imaging modalities or methodological approaches. 
Distinguishing whether frequencies were analyzed per 
number of patients or affected vessels is crucial for 
accurate interpretation and comparison. This distinction 
was taken into account in our study design.

Kinking is classified into three subtypes. The fre-
quency of each subtype is reported differently in the 
literature. For example, Metz et al.9 reported an inci-
dence of kinking and its subtypes studied by angiogra-
phy in 1,000 British patients. They found that among all 
cases of kinking (16%), type A was the most common 
with 6.6% of all dolichoarteriopathy cases, followed by 
type C (6%) and type B (2.5%). Our study showed a 
similar overall prevalence of kinking of 15.0%, with type 
B being the most common. As the definitions of kinking 
subtypes are consistent across studies, these differ-
ences could reflect anatomic variability between popu-
lations or the influence of imaging techniques on the 
identification of kinking patterns. Our results challenge 
the assumption that type A is the predominant subtype 
and emphasize the need to include additional variables 
in dolichoarteriopathy assessments to improve under-
standing of these vascular variants.

One of the strengths of our study is the sample size, 
which was determined using statistical methods to 
ensure a representative population. In addition, CTA 
provides high-resolution imaging that precisely identi-
fies vascular abnormalities. However, some limitations 
need to be considered. First, selection bias may have 
occurred because this was a retrospective study. Also, 
our data were obtained from a single medical center, 
and clinical findings were not recorded.

older individuals are at greater risk of these vascular 
abnormalities. The proposed underlying mechanism is 
related to progressive vascular remodeling, loss of 

Figure 5.  A: sagittal plane reconstruction of a neck CTA in a 63-year-
old woman showing severe or grade III kinking of the EICA, a subtype 
of dolichoarteriopathy defined by an angulation less than 30° 
(arrowhead). B: magnified view showing a 25-degree angle, classified 
as a grade III kinking subtype.
CTA: computed tomography angiography; EICA: extracranial internal carotid 
artery.
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CONCLUSION

Our study showed a high prevalence (55.7%) of EICA 
dolichoarteriopathies in Mexican patients evaluated 
with neck CTA, with a significant association with older 
age groups, and tortuosity being the most common type. 
These findings underscore the need for investigation  
of vascular abnormalities, especially in older adults. 
Further studies are needed to evaluate EICA dolicho-
arteriopathy-associated clinical symptoms in a larger 
population, particularly in older adults.
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ABSTRACT

Introduction: Visual methods for assessing mammographic breast density (MBD) have variable reproducibility in women 
with dense breasts and/or implants. Assessment of MBD by artificial intelligence (AI) and radiologists (human readers, HRs) 
has been reported. This study compared the intraobserver agreement of HRs and the interobserver agreement of Quantra 
AI software and HRs in MBD assessment in women with and without breast implants. Material and methods: HRs and AI 
Quantra 2.2.2 assessed MBD in 2D mammograms and tomosynthesis of women over 35 years of age in two phases. Four 
(a, b, c, d) and two (a+b, non-dense and c+d, dense) MBD categories of the Breast Imaging Reporting and Data System 
(BI-RADS) were used. Intra and interobserver agreement was assessed with light and Cohen’s kappa. Results: 4-HRs eva-
luated 678 mammograms in each phase: 548 without implants and 130 with implants. 4-HRs intraobserver agreement was 
substantial to almost perfect in women without implants in the two MBD categories. For women with implants, intraobserver 
agreement was moderate to substantial in the four and two MBD categories. In women without implants, interobserver agree-
ment between AI Quantra and 4-HRs was moderate to substantial for the two MBD categories, while in women with implants, 
interobserver agreement was slight to fair for the four and two MBD categories. Conclusion: Intraobserver agreement for 
the 4-HRs was better in women without implants in the two MBD categories and acceptable in women with implants. The 
interobserver agreement between AI Quantra and 4-HRs was acceptable for the two MBD categories in women without 
implants, while in women with implants, the interobserver agreement between AI Quantra and 4-HRs was unacceptable for 
the four and two MBD categories. This is the first report on the comparison of AI Quantra and HRs in the assessment of 
MBD in women with and without breast implants.

Keywords: Mammography breast density. Breast implants. Artificial intelligence. Human readers. Quantra software.

INTRODUCTION

Mammography sensitivity decreases in women with 
dense breasts and breast implants1-3. Radiologists use 
visual methods to assess mammographic breast den-
sity (MBD). The most common is the Breast Imaging 
Reporting and Data System (BI-RADS)4,5. However, 
visual techniques are subjective, and their variability 

reduces reproducibility6. Artificial intelligence (AI) has 
been compared to radiologists (human readers, HRs) in 
the MBD assessment7-15. Several AI software have been 
approved by the Food and Drug Administration (FDA)12. 
One of these is AI Quantra v.2.2.2 (Hologic Inc.) which 
quantifies the densest area based on BI-RADS 5th 
Edition4,5.

https://orcid.org/0009-0000-0042-0345
https://orcid.org/0009-0002-5647-825X
https://orcid.org/0009-0005-0469-098X
https://creativecommons.org/licenses/by-nc-nd/4.0/
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The AI software assesses MBD in women with breast 
implants in different ways. Some assess MBD in the 
displaced mediolateral oblique (MLO) and craniocaudal 
(CC) views16; others in the normal MLO and CC views17. 

There are no clinical data comparing the reproducibility 
of MBD assessment in women with and without breast 
implants. This study compared the intraobserver agree-
ment of HRs and the interobserver agreement between 
AI Quantra v2.2.2 and HRs in MBD assessment in 
women with and without breast implants. 

MATERIAL AND METHODS

This prospective cohort study was conducted from  
May 2 to June 30, 2022, in the Breast Imaging Department 
of the Centro de Diagnostico Especializado por Imagen 
in Zapopan, Jalisco, Mexico with a convenience sample 
of radiologists with training in breast imaging. They had 
current certification from the Mexican Council of Radiology 
and Imaging, and informed consent was obtained from 
the radiologists.

Study development and variables

Screening or diagnostic mammograms of women  
35 years or older with and without breast implants were 
analyzed in phases 1 and 2 from a previously published 
study18. MBD was assessed in four (a, b, c, d) and two 
(a+b, non-dense and c+d, dense) categories based on 
the American College of Radiology BI-RADS 5th 
Edition. Sex and years of experience as a radiologist 
performing breast imaging examinations were recorded. 

Procedure for assessing intraobserver 
agreement

MBD assessment between the first (phase 1) and  
second (phase 2) HRs reading  was compared. In  
phase 1, each radiologist reviewed the anonymized 
images during regular work hours, with no knowledge 
of the AI Quantra assessment results.

Each participant repeated this process two weeks 
after phase 1 with the same images in a randomized 
order different from the first assessment. In phase 2, 
the radiologists reviewed the images individually and 
independently at times that differed from their regular 
work hours, with no knowledge of the results of their 
first assessment and the AI Quantra assessment. 

Procedure for assessing interobserver 
agreement

The MBD assessment of the 4-HRs from both  
phases was compared to a single AI Quantra assess-
ment. Interobserver agreement between AI Quantra 
and the 4-HRs was assessed in phases 1 and 2. Four 
and two MBD categories were analyzed.

Protocol for image acquisition and analysis

Digital mammography and digital breast tomosynthe-
sis images were acquired using Selenia Dimensions 
equipment (Hologic, Bedford, MA, USA) with automatic 
acquisition parameters. Images were stored and 
reviewed in the PACS (SecureView, Diagnostic Work-
station Bedford, MA, USA). Conventional projections, 
two CC and two MLO images of both breasts were 
obtained. Images with breast displacement were eval-
uated in women with implants. MBD was classified in 
these images according to the 5th edition of BI-RADS 
based on the densest area of fibroglandular tissue: 
category a, almost entirely fat; category b, scattered 
fibroglandular tissue; category c, heterogeneously dense; 
and category d, extremely dense. 

AI Quantra software 

Mammography images were analyzed with AI Quantra 
version 2.2.2 (Hologic Inc., Bedford, MA, USA). AI 
Quantra analyzes MBD in images with implant displace-
ments. AI Quantra assessment is based on the distri-
bution and texture of the fibroglandular tissue pattern 
with an estimate of breast composition based on dense 
tissue distribution by selecting the densest category 
according to BI-RADS 5th Edition. 

Statistical analysis

Categorical variables are described as frequencies 
and percentages. The agreement of a dichotomous 
categorical variable between the 4-HRs was assessed 
using Cohen’s kappa coefficient. The agreement of an 
ordinal variable between the 4-HRs was assessed with 
the weighted kappa coefficient. Kappa agreement scores 
were interpreted with this scale: slight = 0.00-0.20; fair =  
0.21-0.40; moderate = 0.41-0.60; substantial = 0.61-0.80; 
almost perfect = 0.81-1.00. A p value < 0.05 was con-
sidered significant. The analysis was performed with 
SPSS version 25 (IBM Corp., Armonk, NY, USA).
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RESULTS

Four women radiologists with experience in interpreting 
breast images, ranging from 2 to 32 years, participated 
in the study.

Classification of the four MBD categories by 
AI Quantra™ and 4-HRs in phases 1 and 2 
in women with and without breast implants

In phase 1, in women without breast implants (n = 548),  
AI Quantra reported a higher number of mammograms 
in category d (n = 132) than the 4-HRs (n = 16 to 57) 
and a higher number of mammograms in category a (n 
= 57) compared to 4-HRs (n = 21 to 41) (Figure 1A). 
There was concordance in category c, AI (n= 253) and 
HRs (n = 252 to 278). AI reported a lower number of 
mammograms in category b (n = 107) than the 4-HRs 
(n = 197 to 253). 

In phase 2, in the MBD classification of four catego-
ries in women without breast implants (n = 548), AI 
Quantra reported a higher number of mammograms in 
categories a (n = 57) and d (n = 132) than the 4-HRs 
(n = 18 to 48) and (n = 41 to 86) (Figure 1B). AI reported 
a lower number of mammograms in category b (n = 
107) than the 4-HRs (163 to 204). AI (n = 252) and the 
4-HRs (n = 255 to 281) showed better concordance in 
category c.

In phase 1, in the MBD classification of four categories 
in women with breast implants (n = 130), AI Quantra 
reported a higher number of mammograms in category 
d (n = 68) than the 4-HRs (n = 7 to 31) (Figure 1C). There 
was better concordance in category c, AI (n= 46) and 
HRs (n = 41 to 62). AI reported a lower number of mam-
mograms in categories a (n = 2) and b (n = 14) than the 
4-HRs categories a (n = 7 to 14) and b (n = 41 to 57). 

Figure 1D shows the MBD classification of four  
MBD categories in women with breast implants (n = 
130) in phase 2. AI Quantra reported a lower number 
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Figure 1. Concordance between AI Quantra and 4-HRs in classifying four MBD categories using BI-RADS 5th Edition: category a, almost 
entirely fat; category b, scattered fibroglandular tissue; category c, heterogeneously dense; and category d, extremely dense. A-B: 548 women 
without breast implants in phases 1 and 2. C-D: 130 women with breast implants in phases 1 and 2. 
AI: artificial intelligence; BI-RADS: Breast Imaging Reporting and Data System; HRs: human readers; MBD: mammography breast density.
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Figure 2. Concordance between AI Quantra and 4-HRs in classifying the two MBD categories (non-dense and dense) using BI-RADS 5th 
Edition: category a, almost entirely fat; category b, scattered fibroglandular tissue; category c, heterogeneously dense; and category d,  
extremely dense. A-B: 548 women without breast implants in phases 1 and 2. C-D: 130 women with breast implants in phases 1 and 2. 
AI: artificial intelligence; BI-RADS: Breast Imaging Reporting and Data System; HRs: human readers; MBD: mammography breast density.
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of mammograms in categories a (n = 2) and b (n = 14) 
than the 4-HRs (n = 6 to 13) and (n = 31 to 57). AI also 
reported a higher number in category d (n = 68) than 
the 4-HRs (n = 18 to 39). Concordance was better in 
category c for AI (n = 46) and the 4-HRs (n = 42 to 64 
mammograms). 

Classification of the two MBD categories 
(dense and non-dense) by AI Quantra and 
the 4-HRs in phases 1 and 2 in women 
with and without breast implants

In phase 1, in women without breast implants (n = 
548), AI Quantra classified a higher number of mam-
mograms as dense breasts (n = 384) than non-dense 
breasts (n = 164) (Figure 2A). The 4-HRs mammogram 
assessments of dense breasts ranged from 268 to 
312, and of non-dense breasts, 236 to 280. 

Figure 2B shows the two MBD categories classification 
in women without breast implants (n = 548) in phase 2. 
AI Quantra classified a higher number of mammograms 

as dense breasts (n = 384) than 4-HRs (296 to 364). 
AI reported fewer mammograms as non-dense breasts 
(n = 114) than the 4-HRs (n = 184 to 252).

In phase 1, in the two MBD categories classification 
in women with breast implants (n = 130), AI Quantra 
reported a higher number of mammograms in the dense 
breast category (n = 114) compared to non-dense 
breasts (n = 16) (Figure 2C). The 4-HRs mammograms 
ranged from 59 to 81 in the dense breast category and 
37 to 71 in non-dense breasts. 

Figure 2D shows the two MBD categories classifica-
tion in women with breast implants (n = 130) in phase 2. 
In this phase, 4-HRs had a lower number of mammo-
grams in the dense breast category (60 to 93) than 
AI Quantra (n = 114). In phase 2, there were greater 
differences in breast density classification by 4-HRs 
in women with implants.

Figure 3 shows concordance between 4-HRs and AI 
Quantra in mammograms of the four MBD categories 
classification in women without breast implants. Figure 4 
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Figure 3. A, B, C, and D: mammography, MLO views of the right breast in women without breast implants showing concordance between 
4-HRs and AI Quantra in classifying four MBD categories using BI-RADS 5th Edition: category a, almost entirely fat; category b, scattered 
fibroglandular tissue; category c, heterogeneously dense; and category d, extremely dense. 
AI: artificial intelligence; BI-RADS: Breast Imaging Reporting and Data System; MBD: mammography breast density; HR: human reader; MLO: mediolateral oblique.

A B C D

Figure 4. A, B, C, and D:  mammography, MLO views of the right breast in women without breast implants, showing no concordance between 
4-HRs and AI Quantra in classifying four MBD categories using BI-RADS 5th Edition: category a, almost entirely fat; category b, scattered 
fibroglandular tissue; category c, heterogeneously dense; and category d, extremely dense. 
AI: artificial intelligence; BI-RADS: Breast Imaging Reporting and Data System; HR: human reader; MBD: mammography breast density; MLO: mediolateral oblique.
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shows mammograms with no concordance between 
4-HRs and AI Quantra in the four MBD categories clas-
sification in women without breast implants.

Intraobserver agreement of 4-HRs in the 
assessment of four and two MBD 
categories in women with and without 
breast implants

Intraobserver agreement was substantial for HR 1, 3, 
and 4, and moderate for HR2 in the four MBD catego-
ries in women without breast implants (Table 1). In two 
MBD categories (non-dense and dense), HR2 and HR4 
agreement increased to substantial and almost perfect, 
respectively (p < 0.001). In women with breast implants, 
intraobserver agreement was comparable as moderate 
to substantial in the four and two MBD categories (non-
dense and dense) (p < 0.001) (Table 2).

Interobserver agreement between AI 
Quantra and 4-HRs for four and two  
MBD categories in women without  
breast implants

In women without breast implants in phase 1, inter-
observer agreement between AI Quantra and 4-HRs 
was moderate for HR1, HR3, and HR4 and fair for 
HR2 for the four MBD categories (Table 3). In the two 
MBD categories, the agreement was moderate for all 
4-HRs.

In women without breast implants in phase 2, interob-
server agreement between AI Quantra and 4-HRs was 
moderate for the four and two MBD categories (non-
dense and dense) (Table 4). The agreement was  
substantial for HR1, HR2, and HR4, and moderate for 
HR3.

Interobserver agreement between AI 
Quantra and 4-HRs for four and two  
MBD categories in women with breast 
implants

For women with breast implants, interobserver agree-
ment between AI Quantra and 4-HRs for four and two 
MBD categories was slight to fair in both phases 
(Tables 5 and 6). Figure 5 shows mammograms with 
concordance between HRs and AI Quantra in classify-
ing the four MBD categories in women with breast 
implants. Figure 6 shows no concordance between HRs 
and AI Quantra classifying the four MBD categories in 
women with breast implants.

DISCUSSION 

In our study, the intraobserver agreement of the 4-HRs 
in the two MBD categories was better in women without 
breast implants and acceptable in women with breast 
implants. In women without breast implants, the interob-
server agreement between AI Quantra and 4-HRs was 
acceptable for the two MBD categories. In contrast, for 
women with breast implants, agreement was unaccept-
able for the four and two MBD categories. This report is 
the first that compares MBD assessment between AI 
Quantra and HRs in women with and without breast 
implants.

Intraobserver agreement was better (substantial to 
almost perfect) in women without breast implants in two 
MBD categories (non-dense and dense), while in four 
MBD categories intraobserver agreement was compa-
rable between women with and without breast implants. 
However, in women with implants, intraobserver agree-
ment was acceptable for HRs in four and two MBD 
categories with substantial agreement for three HRs 
and moderate for one. The better intraobserver agree-
ment in two MBD categories (non-dense and dense) 
may be because it is easier for the human eye to dis-
tinguish low and high breast density.

The interobserver agreement between AI Quantra 
and 4-HRs in women without breast implants was mod-
erate to substantial but only fair in HR 2. In contrast, in 
women with breast implants, interobserver agreement 
between AI Quantra and the 4-HRs was unacceptable, 
with slight to fair interobserver agreement in the four 
and two MBD categories as AI Quantra software was 
not designed to assess women with breast implants. 
The human eye has its limitations in assessing women 
with breast implants. However, the HRs showed an 
acceptable and comparable MBD assessment in 
women with and without breast implants.

The concordance in classifying MBD categories by 
AI Quantra and 4-HRs in both phases, showed fewer 
non-dense breasts by AI Quantra than by the 4-HRs in 
women with and without breast implants. In phase 2, 
although the HRs reported a higher number of dense 
breasts, AI Quantra had a higher percentage of mam-
mograms reported as dense breasts. The highest con-
cordance of AI Quantra and 4-HRs in both phases was 
seen in HR1, a radiologist with more years of experi-
ence. The concordance in classifying MBD by AI 
Quantra and 4-HRs was found in 1 out of 4 women with 
breast implants. It is more difficult to assess breast 
density in women with breast implants, despite the dis-
placed projections. 
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Table 1. Intraobserver agreement of 4-HRs in four and two MBD categories between phases 1 and 2 in women without breast implants

Reader Four MBD categoriesa Two MBD categoriesb

Weighted kappa (95% CI) Agreement Light kappa (95% CI) Agreement 

HR1 0.73 (0.68 to 0.77) Substantial 0.77 (0.72 to 0.82) Substantial

HR2 0.58 (0.53 to 0.64) Moderate 0.64 (0.58 to 0.70) Substantial

HR3 0.78 (0.73 to 0.82) Substantial 0.79 (0.74 to 0.84) Substantial

HR4 0.80 (0.76 to 0.84) Substantial 0.87 (0.83 to 0.91) Almost perfect

aFour MBD categories refer to a, b, c, d; bTwo MBD categories refer to a+b and c+d (non-dense and dense, respectively). All p values are < 0.001.

CI: confidence interval; HRs: human readers; MBD: mammographic breast density.

Table 2. Intraobserver agreement of 4-HRs in four and two MBD categories between phases 1 and 2 in women with breast implants

Reader Four MBD categoriesa Two MBD categoriesb

Weighted kappa (95% CI) Agreement Light kappa (95% CI) Agreement 

HR1 0.74 (0.65 to 0.83) Substantial 0.76 (0.64 to 0.88) Substantial

HR2 0.54 (0.44 to 0.64) Moderate 0.60 (0.48 to 0.73) Moderate

HR3 0.72 (0.62 to 0.81) Substantial 0.71 (0.58 to 0.83) Substantial

HR4 0.74 (0.64 to 0.83) Substantial 0.78 (0.68 to 0.89) Substantial

aFour MBD categories refer to a, b, c, d; bTwo MBD categories refer to a+b and c+d (non-dense and dense, respectively). All p values are < 0.001. 

CI: confidence interval; HRs: human readers; MBD: mammographic breast density.

Table 3. Interobserver agreement between AI Quantra and 4-HRs with four and two MBD categories in women without breast implants in phase 1

Reader Four MBD categoriesa Two MBD categoriesb 

Weighted kappa (95% CI) Agreement Light’s kappa (95% CI) Agreement

AI Quantra vs. HR1 0.57 (0.51 to 0.62) Moderate 0.60 (0.53 to 0.66) Moderate

AI Quantra vs. HR2 0.40 (0.35 to 0.45) Fair 0.49 (0.43 to 0.56) Moderate

AI Quantra vs. HR3 0.48 (0.43 to 0.53) Moderate 0.55 (0.49 to 0.62) Moderate

AI Quantra vs. HR4 0.47 (0.42 to 0.52) Moderate 0.60 (0.53 to 0.66) Moderate

aFour MBD categories refer to a, b, c, d; bTwo MBD categories refer to a+b and c+d (non-dense and dense, respectively). BI-RADS: Breast Imaging Reporting 
and Data System; CI: confidence interval. All p values are < 0.001. AI: artificial intelligence; HRs: human readers; MBD: mammographic breast density.

Table 4. Interobserver agreement between AI Quantra and 4-HRs with four or two MBD categories in women without breast implants in phase 2

Reader Four MBD categoriesa Two MBD categoriesb 

Weighted kappa (95%CI) Agreement Light kappa (95% CI) Agreement

AI Quantra vs. HR1 0.59 (0.53 to 0.64) Moderate 0.65 (0.59 to 0.72) Substantial

AI Quantra vs. HR2 0.59 (0.54 to 0.64) Moderate 0.68 (0.62 to 0.75) Substantial

AI Quantra vs. HR3 0.51 (0.46 to 0.56) Moderate 0.55 (0.49 to 0.62) Moderate

AI Quantra vs. HR4 0.56 (0.51 to 0.61) Moderate 0.64 (0.57 to 0.70) Substantial

aFour MBD categories refer to a, b, c, d; bTwo MBD categories refer to a+b and c+d (non-dense and dense, respectively). BI-RADS: Breast Imaging Reporting 
and Data System; CI: confidence interval. All values are p < 0.001. AI: artificial intelligence; HRs: human readers; MBD: mammographic breast density.



B.E. Gonzalez-Ulloa et al. MBD assessment in women with and without breast implants

109

Table 5. Interobserver agreement between AI Quantra and 4-HRs with four and two MBD categories in women with breast implants in phase 1

Reader Four MBD categoriesa Two MBD categoriesb

Weighted kappa (95% CI) Agreement Light’s kappa (95% CI) Agreement

AI Quantra vs. HR1 0.24 (0.14 to 0.34) Fair 0.34 (0.20 to 0.50) Fair

AI Quantra vs. HR2 0.11 (0.04 to 0.18) Slight 0.24 (0.12 to 0.36) Fair

AI Quantra vs. HR3 0.13 (0.05 to 0.20) Slight 0.18 (0.08 to 0.28) Slight

AI Quantra vs. HR4 0.11 (0.05 to 0.19) Slight 0.22 (0.11 to 0.33) Fair

aFour MBD categories refer to a, b, c, d; bTwo MBD categories refer to a+b and c+d (non-dense and dense, respectively). BI-RADS: Breast Imaging Reporting 
and Data System; CI: confidence interval. All p values are < 0.001. AI: artificial intelligence; HRs: human readers; MBD: mammographic breast density.

Table 6. Interobserver agreement between AI Quantra and 4-HRs with four and two MBD categories in women with breast implants in phase 2

Reader Four MBD categoriesa Two MBD categoriesb

Weighted kappa (95% CI) Agreement Light kappa (95% CI) Agreement

AI Quantra vs. HR1 0.22 (0.02 to 0.26) Fair 0.25 (0.07 to 0.42) Fair

AI Quantra vs. HR2 0.21 (0.11 to 0.32) Fair 0.28 (0.11 to 0.46) Fair

AI Quantra vs. HR3 0.09 (0.01 to 0.17) Slight 0.16 (0.05 to 0.26) Slight

AI Quantra vs. HR4 0.13 (0.04 to 0.21) Slight 0.21 (0.08 to 0.34) Fair

aFour MBD categories refer to a, b, c, d; bTwo MBD categories refer to a+b and c+d (non-dense and dense, respectively). BI-RADS: Breast Imaging Reporting 
and Data System; CI: confidence interval. All p values are < 0.001. AI: artificial intelligence; HRs: human readers; MBD: mammographic breast density.

Figure 5. A, B, C, and D: mammography, MLOID views of the right breast in women with breast implants showing concordance between HRs 
and AI Quantra in classifying four MBD categories using BI-RADS 5th Edition: category a, almost entirely fat; category b, scattered fibroglandular 
tissue; category c, heterogeneously dense; and category d, extremely dense.
AI: artificial intelligence; BI-RADS: Breast Imaging Reporting and Data System; MBD: mammography breast density; HR: human reader; MLOID: implant displa-
cement mediolateral oblique.
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The strengths of our study include the prospective 
design, the participation of four radiologists with differ-
ent levels of breast imaging experience, and a sufficient 
sample size to determine intraobserver and interob-
server agreement. The study has several limitations: it 
evaluated only Quantra software, is a single-institution 
study, was performed by four radiologists at the same 
workstation, and all mammograms were acquired from 
a single mammography unit.

CONCLUSION

In our study, intraobserver agreement of the 4-HRs 
in women without breast implants was better (substan-
tial to almost perfect) for the two MBD categories than 
for the four MBD categories, while in women with breast 
implants, intraobserver agreement was comparable 
(moderate to substantial) for both the four and two MBD 
categories. In women without breast implants, the 
interobserver agreement between AI Quantra and 
4-HRs was acceptable (moderate to substantial) for the 
two MBD categories. However, for women with breast 
implants, the interobserver agreement between AI 

Quantra and 4-HRs was unacceptable (slight to fair) for 
both the four and two MBD categories. It would be 
advisable for the industry to offer software capable  
of assessing MBD in women with breast implants 
since there is increasing number of them every day. 
Prospective studies with a large sample size in different 
populations are needed to assess the reproducibility of 
AI Quantra in assessing MBD.
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ABSTRACT

Duplex ultrasound (US) is a useful non-invasive imaging modality with high specificity and moderate sensitivity for assessing 
portal hypertension. Liver cirrhosis is the most common cause of portal hypertension, accounting for 90% of all causes. 
Portal hypertension can cause complications such as variceal bleeding, ascites, and hepatic encephalopathy. A comprehen-
sive duplex US acquisition and analysis protocol for portal hypertension, as well as its usefulness for evaluation, etiology, 
and anatomic location, has not been established. This technical note proposes a comprehensive duplex US protocol for 
portal hypertension that uses a vascular preset of the abdomen and liver and morphologic and hemodynamic assessment 
of five regions in sequential order: splenic, pancreatic, cardiac, hepatic, and inframesocolic. Morphological parameters in-
clude dimension, volume, echotexture, echogenicity, and the presence of lesions. Hemodynamic parameters include vessel 
diameter, flow direction, spectral morphology, flow velocity, the presence of thrombi, resistance index (RI), and pulsatility 
index (PI). In the liver, the assessment includes atrophy or hypertrophy, regenerative nodules, and the surface pattern. He-
patic and splenic elastography are recommended as complementary examinations. This technical note, which includes all 
available duplex US modalities, such as grayscale, color Doppler, power Doppler, and B-Flow examinations, is published for 
educational purposes.

Keywords: Portal hypertension. Ultrasound. Duplex ultrasound. Liver cirrhosis. Technical note.

INTRODUCTION

Portal hypertension is a serious complication of 
chronic liver disease (CLD) that can lead to variceal 
bleeding, ascites, and hepatic encephalopathy1,2. A 
non-invasive imaging examination that assesses portal 
hypertension is recommended because measurement 
of the hepatic venous pressure gradient (HVPG), the 
gold standard for diagnosing portal hypertension, is 
invasive and requires direct cannulation of the right 

main hepatic vein by an interventional radiologist3.  
In addition, this examination is costly and difficult  
to access in low-to-middle-income countries, such  
as Mexico. Duplex ultrasound (US) is a useful non- 
invasive imaging modality for the evaluation of portal 
hyper tension. It has high specificity and moderate sen-
sitivity for detecting portal hypertension4,5. Duplex US 
examination may have implications for etiologic and 
non-etiologic therapies, prevention of the first episode 
of decompensation, management of acute bleeding 
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episodes, prevention of further decompensation, and 
diagnosis and management of splanchnic vein throm-
bosis and other vascular disorders of the liver3,4,6. 

Hepatic and splenic elastography are complementary 
and useful in predicting the severity of portal hyperten-
sion3,5,7,8. Contrasted-enhanced duplex US examination 
can improve the detection of vascular abnormalities 
and the assessment of portal hemodynamics5. The 
presence or absence of splenomegaly, gastroesopha-
geal varices, portosystemic shunts, or ascites on com-
puted tomography may be helpful to confirm or rule  
out clinically significant portal hypertension in CLD 
patients9. On the other hand, magnetic resonance 
imaging is useful for visualizing portosystemic collater-
als, confirming the presence of portal vein thrombosis 
or cavernoma, and, in some cases, provides informa-
tion on flow and hemodynamics3,6.

Portal pressure is normally between 7 and 12 mmHg 
at rest and under fasting conditions. The HVPG rep-
resents the portal perfusion pressure of the liver, which 
is between 1 and 4 mmHg. Values above 5 mmHg 
indicate portal hypertension and values above 10 
mmHg correspond to clinically significant portal hyper-
tension, which is when clinical complications ensue. 

The causes of portal hypertension can be classified 
according to their anatomical location1: prehepatic, 
intrahepatic, or posthepatic3. Liver cirrhosis is the most 
common cause of portal hypertension, accounting for 
90% of all causes. The formation of scar tissue and 
regenerative nodules leads to increased intrahepatic 
vascular resistance and portal pressure3. The most 
common extrahepatic cause of portal hypertension is 
portal vein thrombosis in the trunk of the portal vein or 
its branches3. This condition often occurs in the context 
of CLD4,6. A comprehensive duplex US acquisition and 
analysis protocol for portal hypertension and its useful-
ness for assessment, etiology, and anatomic location 
has not been defined3. This technical note proposes a 
comprehensive duplex US acquisition and analysis pro-
tocol for portal hypertension. 

DUPLEX US PORTAL HYPERTENSION 
PROTOCOL

The duplex US acquisition and analysis protocol 
includes morphologic and hemodynamic assessment 
of five regions in sequential order: splenic (Figure 1A), 
pancreatic (Figure 1B), cardiac (Figure 1C), hepatic 

Figure 1. Duplex grayscale US showing the 5 regions of the portal hypertension assessment protocol. A: splenic region, sagittal view, showing the 
spleen (white asterisk), hemidiaphragm (arrowhead), and left kidney (yellow asterisk) with no abnormalities. B: pancreatic region, transverse view, 
showing normal pancreas, Wirsung duct (white arrowhead), splenic vein (yellow arrowhead), and peripancreatic region. C: cardiac region with 
subxiphoid approach, view of the four chambers with no alterations. D: hepatic region with intercostal approach, sagittal view, showing portal vein 
dilatation (19 mm) (white arrowhead). E: hepatic region with subcostal approach, transverse view, showing the three hepatic veins at their confluence 
with the vena cava (white arrowhead). F: inframesocolic region, sagittal view, showing bladder (asterisk) and uterus with normal size and morphology 
without ascites. 
US: ultrasound.

A B C

D E F



J Mex Fed Radiol iMaging. 2025;4(2):112-124

114

(Figure 1D-E), and inframesocolic (Figure 1F) regions. 
The patient should fast for 4-6 hours and ingest two 
liters of water two hours before starting the duplex US 
examination; if necessary, the patient can drink one or 
two additional glasses of water to achieve adequate 
gastric distension. 

Morphologic duplex US findings of the 
splenic region in portal hypertension 
assessment

The evaluation begins with grayscale US with longitu-
dinal and transverse projections in the left lung base with 

the patient in the right lateral decubitus. The mobility 
of the diaphragm and the presence of lesions are 
assessed. In the pleural space, the presence of pleural 
effusion is evaluated, and collections or lesions in the 
subphrenic space are described (Figure 2A). 

The examination continues with the spleen in the 
longitudinal projection, measuring the longitudinal and 
anteroposterior diameter (cm) (Figure 2B), and in the 
transverse projection, measuring the transverse diam-
eter (cm) (Figure 2C) (Table 1A). The spleen volume is 
determined from these three measurements (cm3) 
whereby the normal value must be less than 322 (cm3)10. 
The echotexture of the spleen (homogeneous or 

Figure 2. Morphologic US duplex findings of the splenic region in portal hypertension assessment. A: a 71-year-old man with CLD. Grayscale US, 
sagittal view with high-frequency linear transducer (10 MHz) with normal left pleural space (white arrowhead) without pleural effusion. B-C: a 
59-year-old woman diagnosed with CLD. Grayscale US, longitudinal and transverse view, with longitudinal (19.7 cm), anteroposterior (6.5 cm), and 
transverse (18.5 cm) diameters and a spleen volume of 1,238 cm3 (not shown). D: a 27-year-old man with CLD, sagittal view of the spleen in grayscale 
US with normal gastro-splenic ligament (5.8 mm) (arrowheads). E: a 78-year-old woman with CLD, transverse view of the spleen with thickening of 
the gastro-splenic ligament (11 to 12 mm) (arrowheads). Hemodynamic US duplex findings of the splenic region in portal hypertension assessment. 
F: US duplex of a 30-year-old man with CLD, transverse view, showing splenic artery with patency; spectral morphology with a slight increase in 
velocity (109.8 cm/s) (arrowhead). G: US duplex of a 40-year-old man, transverse view, showing the splenic vein with patency, hepato-petal flow, 
and normal velocity of 22.4 cm/s (arrowhead). H: color Doppler US of a 46-year-old man with CLD, transverse view, showing increased intrasplenic 
vascularity and hepatofugal flow in the upper perisplenic area (white arrowhead).  I: a 59-year-old woman with CLD, US duplex Doppler, sagittal 
view, showing perisplenic hepatofugal flow in the upper and subphrenic areas (arrowhead).
US: ultrasound; CLD: chronic liver disease.
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Table 1A. Morphologic grayscale US findings of the splenic region in portal hypertension assessment

Description Dimension Echotexture  
(homogeneous/heterogeneous)

Echogenicity Lesion  
(yes/no)

Spleen, volume, L × AP × Ta, cm3

Gastrosplenic ligamentb, AP, mm

Left kidney, volume, L × AP × T, cm3

aThe volume is calculated by multiplying these parameters: the result is multiplied by 0.529; bOnly one diameter is measured for the gastrosplenic ligament; with 
an upper normal limit of 8 mm (author´s experience, MFS). AP: anteroposterior; L: longitudinal; T: transverse; US: ultrasound.

heterogeneous), echogenicity (hyperechogenic, iso-
echogenic, or hypoechogenic), and focal lesions are 
evaluated together with their characteristics. The antero-
posterior diameter of the gastrosplenic ligament is mea-
sured on the inner surface of the spleen. The normal 
value is less than 8 mm (Fig. 2D); thickening is consid-
ered to be greater than 8 mm (author’s experience, MFS) 
as, to our knowledge, there is no reference to this finding 
in the medical literature in relation to portal hypertension 
(Figure 2E). The examination continues with the left kid-
ney in longitudinal and transverse projections, measuring 
the longitudinal, anteroposterior, and transverse diame-
ters11. The volume is calculated by multiplying these 
parameters. The results are then multiplied by 0.52, 
which corresponds to the formula of an ellipsoid11.

Hemodynamic duplex US findings of the 
splenic region in portal hypertension 
assessment

It starts in the splenic artery (Figure 2F) with the 
assessment of diameter (mm), flow direction (antegrade 

or retrograde), spectral morphology, flow velocity 
(cm/s), the presence of thrombi, resistance index (RI) 
(normal value of 0.56)4,12, and the pulsatility index (PI) 
(normal value ≥ 1)4 (Table 1B).

We continue with the splenic vein (Figure 2G) and 
evaluate the same parameters as those of the splenic 
artery. The ideal position for assessment is the trans-
verse section of the spleen to obtain an approximate 
angle of 0 degrees. Intrasplenic vascularity is assessed 
qualitatively to determine whether it is increased or 
decreased (Figure 2H). The presence of collateral circu-
lation in the splenic hilum, upper (Figure 2I) and lower 
perisplenic regions, and gastrosplenic shunts is assessed. 

The left renal artery is assessed for diameter (mm), flow 
direction, spectral morphology (monophasic, biphasic, tri-
phasic, or tetraphasic), flow velocity (cm/s), and the pres-
ence of thrombi, as well as RI (normal value < 0.7) and 
PI (normal value between 1.0 and 1.5)13. We continue with 
the left renal vein to determine the diameter (mm), flow 
direction, spectral morphology, flow velocity (cm/s), the 
presence of thrombi, and confirm or rule out a splenore-
nal shunt; this finding is always considered abnormal.

Table 1B. Hemodynamic duplex US findings in the splenic regiona in portal hypertension assessment

Description Diameter  
(mm)

Direction of flow 
(antegrade/retrograde)

Spectral 
morphology

Flow velocity  
(cm/s)

Thrombosis 
(yes/no)

Splenic arteryb

Splenic veinc  

Splenic hilar collateral circulation

Collateral perisplenic upper circulation 

Collateral perisplenic inferior circulation

Gastrosplenic shunts

Left renal arteryb

Left renal vein

Splenorenal shunts 

aThe evaluation is supplemented by splenic elastography; bSplenic and left renal arteries: to assess resistivity index (RI) and pulsatility index (PI). cThe intrasplenic 
vascularity is qualitatively assessed to determine whether it is decreased or increased. US: ultrasound.
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Morphologic duplex US findings of the 
pancreatic region in portal hypertension 
assessment

With the patient in the right lateral decubitus position 
and later in the supine decubitus position, we proceed 
with a morphologic assessment of the pancreatic region 
using the splenic vein (Figure 3A) and the left renal vein 
(Figure 3B) as anatomic references (Table 2A). The pan-
creas is assessed by measuring (cm) all segments, the 

head, body, and tail, its echotexture (homogeneous or 

heterogeneous), its echogenicity (compared to the 

liver), and the presence of lesions. The AP diameter of 

the Wirsung duct (normal, 2-3 mm) and its morphology 

according to contours, regular or irregular (Figure 3C), 

are evaluated. Identification of the Wirsung duct can be 

difficult if it is not dilated, especially for inexperienced 

operators. Intraductal stones associated with chronic 

calcifying pancreatitis may be encountered.

Figure 3. Morphologic US duplex findings of the pancreatic region in portal hypertension assessment. A: a 32-year-old woman, transverse 
grayscale view showing all segments of the pancreas (white arrowheads) and splenic vein (yellow arrowhead) with normal features with AP 
measurement of the pancreatic body and tail of 13 mm. B: a 39-year-old woman, grayscale US transverse view showing normal pancreas 
and Wirsung duct 2.6 mm (not shown) (white arrowhead) and left renal vein (yellow arrowhead) until it reaches the vena cava. C: a 48-year-
old man with CLD. Grayscale US transverse view showing normal pancreas and Wirsung duct (white arrowhead). D: a 46-year-old woman 
with CLD. Grayscale US transverse view of the pancreas showing aneurysmal dilatation (22 mm, not shown) of the splenic vein (white asterisk). 
Hemodynamic US duplex findings of the pancreatic region in portal hypertension assessment. E: a 41-year-old male with portal hypertension; 
US duplex transverse view of the pancreas showing hepatofugal flow in the splenic vein at a velocity of 18.7 cm/s (arrowhead). A 48-year-old 
man with idiopathic portal hypertension. F: color Doppler sagittal view of the superior mesenteric vein (white arrowhead) with patency and 
hepatofugal flow. G: color Doppler US, transverse view of the pancreas with endoluminal hypoechogenic material along the entire length of 
the splenic vein (white arrowheads) with absent flow due to chronic thrombosis. H: a 59-year-old woman with CLD. Grayscale US transverse 
view of the pancreas showing normal artery (white arrowhead) and splenic vein (yellow arrowhead) and 8.8 mm peripancreatic collateral 
circulation (white arrows). I: a 59-year-old woman with CLD, color Doppler US transverse view showing the left gastric vein (white arrowhead) 
and the adjacent collateral circulation (yellow arrowheads).
AP: anteroposterior; CLD: chronic liver disease; US: ultrasound.
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and the presence of a thrombus. The left gastric vein is 
evaluated with the same parameters. Its normal diameter 
is < 5 mm (Figure 3I)14. 

Duplex US findings of the cardiac region 
in portal hypertension assessment

The vena cava hiatus is assessed with duplex US, 
determining the diameter, flow direction, spectral mor-
phology, flow velocity, and the presence of thrombosis 
(Table 3). Grayscale US examination with a subxiphoid 
approach and cephalic orientation identifies the four 
heart chambers and evaluates their mobility, interven-
tricular septum integrity, right and left ventricle, and 
right and left atrium diameters, and the presence of 
thrombi, myxomas, or pericardial effusion. 

Hemodynamic duplex US findings of the 
pancreatic region in portal hypertension 
assessment

The splenic vein is examined along its entire course 
from the splenic hilum to its junction with the superior 
mesenteric vein and the splenomesoportal confluence 
(Table 2B). The diameter (mm) (Figure 3D), the antero-
grade or retrograde flow direction (Figure 3E-F), spec-
tral morphology, flow velocity (cm/s), and the presence 
of a thrombus (Figure 3G) are determined.

The peripancreatic collateral circulation (Figure 3H)  
and the periduodenal, perigastric, periesophageal, ret ro-
peritoneal, and paraumbilical circulation are assessed by 
determining the diameter (mm), anterograde or retrograde 
flow direction, spectral morphology, flow velocity (cm/s), 

Table 2A. Morphologic US grayscale findings of the pancreatic region in portal hypertension assessment

Description Dimension Echotexture  
(homogeneous/heterogeneous)

Echogenicity relative 
to the liver

Lesion  
(yes/no)

Pancreas, cm

AP view head

AP view body

AP view tail

Wirsung ducta,b, mm 

aIt is only visible when dilated. It can be difficult to identify for inexperienced observers if it is not dilated; bMorphology: regular or irregular. AP: anteroposterior; 
US: ultrasound.

Table 2B. Hemodynamic duplex US findings in the pancreatic region in portal hypertension assessment 

Description Diameter  
(mm)

Direction of flow 
(antegrade/retrograde)

Spectral 
morphology

Flow velocity  
(cm/s)

Thrombosis 
(yes/no)

Splenic vein

Superior mesenteric vein

Collateral peripancreatic circulation

Collateral periduodenal circulation

Collateral perigastric circulation

Collateral periesophageal circulation

Collateral retroperitoneal circulation

Collateral paraumbilical circulation

Left gastric vein 

US: ultrasound.
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Table 3. Duplex US findings of the cardiac region in portal hypertension assessment

Description

Duplex US:
Caval hiatus, measurement of diameter, assessment of permeability, anterograde or retrograde flow direction, spectral morphology, 
flow velocity, and presence of thrombosis.

Grayscale US:
Four-chamber view of the heart: check motility integrity of the interventricular septum diameter of each of the four chambers, 
presence of thrombosis, myxoma or pericardial effusion, and in the vena cava, flow velocity, spectral morphology, flow direction, and 
presence of thrombosis.

US: ultrasound.

Figure 4. Morphologic grayscale US findings of the hepatic region in the assessment of portal hypertension. A: a 22-year-old woman, grayscale 
US, longitudinal view showing the left hepatic lobe, hiatus cava (yellow arrowhead), left hepatic vein (white arrowhead), left hemidiaphragm 
(yellow arrow), and aortic hiatus (white arrow) with no alterations. B: a 69-year-old man with alcoholic liver disease, Grayscale US transverse 
view of the left lobe showing left portal vein, venous ligament, and compensatory hypertrophy of the caudate lobe (white asterisk). C: an 
81-year-old woman with CLD. Grayscale US, sagittal, and transverse views of the right hepatic lobe in segment V with a hyperechogenic, 
solid, well-defined image measuring 4.2 × 3.6 × 3.4 cm in longitudinal, transverse and AP diameters, respectively. Regeneration nodule volume 
of 28 cc (white arrowheads). D: a 28-year-old man with hepatocarcinoma. US color Doppler shows a solid lesion with irregular contours and 
heterogeneous texture with hypervascularity within it and neoformation vessels. E: a 35-year-old woman, Grayscale US, obtained with a 
high-frequency linear transducer showing a normal surface pattern of the left hepatic lobe with smooth borders. F: a 78-year-old woman with 
CLD, image obtained with a high-frequency linear transducer showing an irregular surface pattern of the left hepatic lobe and a heterogeneous 
echotexture. G: a 69-year-old man with alcoholic liver disease, Grayscale US, transverse view of the left hepatic lobe showing a 10 mm 
thickening of the falciform ligament (white arrowhead) and hypertrophy of the caudate lobe (white asterisk). H: a 32-year-old man. Grayscale 
US with diffusely increased echogenicity of the right hepatic lobe (white asterisk) and normal right kidney (yellow asterisk). I: a 40-year-old 
woman with no liver pathology, composite image with transverse and longitudinal views with a transverse diameter of 22.6 cm, an AP of 13.7 cm, 
and a longitudinal diameter of 15.2 cm. Estimated liver volume of 2,461.35 cm3.
AP: anteroposterior; CLD: chronic liver disease; US: ultrasound.
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Morphologic grayscale US findings of the 
hepatic region in portal hypertension 
assessment

The examination is performed with grayscale US in 
supine decubitus and then in left lateral decubitus. It 
starts with the left hepatic lobe in sagittal projection 
(Figure 4A), then in transverse projection (Table 4) 
(Figure 4B). We assess the homogeneous or heteroge-
neous echotexture, echogenicity, the presence of atro-
phy or hypertrophy, regeneration nodules (Figure 4C), 
and lesions (Figure 4D). The abnormal liver pattern may 
be microgranular (less than 3 mm) or macrogranular 
(more than 3 mm), and the surface pattern regular or 
irregular/granular15 (Figure 4E-F). The venous and fal-
ciform ligaments are identified. The AP diameter (mm) 
of the falciform ligament is measured (Figure 4G). Right 
hepatic lobe assessment is continued (Figure 4H) with 
the same parameters as the left hepatic lobe.

We continue with the gallbladder, measuring its 
dimensions in the longitudinal, anteroposterior, and 
transverse diameters and determining its volume (cm3). 
Its contents, the presence of lesions, and its wall thick-
ness (normal value 2-3 mm) are assessed. With the 
patient in the left oblique decubitus position, with a 
transverse projection and a subcostal approach, the 

maximum transverse diameter of the left and right 
hepatic lobes (cm) and the maximum anteroposterior 
diameter are measured. In longitudinal projection, the 
maximum longitudinal diameter of the right lobe is mea-
sured, and the liver volume is determined10 (Figure 4I). 
The volume is calculated by multiplying these parame-
ters and then multiplying the result by 0.52, which is 
the formula of an ellipsoid11.

Mobility and lesions in the right hemidiaphragm are 
assessed. The pleural space is searched for an effu-
sion, and the presence or absence of collections or 
lesions in the perihepatic, subhepatic, and subphrenic 
spaces are described.

Hemodynamic duplex US findings of the 
hepatic region in portal hypertension 
assessment

Examination starts in the left hepatic vein, determin-
ing the diameter (mm), flow direction (antegrade or 
retrograde), spectral morphology, flow velocity (cm/s), 
and the presence of a thrombus, indicating whether it 
is acute or chronic and benign or malignant (Table 5) 
(Figure 5A). We continue with the left portal vein and 
the hepatic artery and determine the same parameters. 

Table 4. Morphologic US grayscale findings of the hepatic region in portal hypertension assessment 

Descriptiona Dimension Echotexture 
(homogeneous/
heterogeneous)

Echogenicity Atrophy/
hypertrophy

Regeneration 
nodule

Lesion 
(yes/no)

Superficial 
pattern (regular/

irregular)

Left lobe of the liver

Ligamentum falciform, 
AP, mm

Right lobe of the liver 

Gallbladder, volume  
L × AP × T, cm3

Gallbladderb

Gallbladder wall 
thickness, mm

Liver volume,  
L × AP × T, cm3

Right kidney

Right kidney, volume,  
L × AP × T, cm3

aThe venous ligament is used as an anatomical reference. bGallbladder: its content and the presence of lesions are assessed. L: longitudinal; AP: anteroposterior;  
T: transverse; US: ultrasound. 
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Table 5. Hemodynamic duplex US findings of the hepatic regiona in portal hypertension assessment

Description Diameter 
(mm)

Direction of flow 
(antegrade/
retrograde)

Spectral 
morphology

Flow  
velocity 
(cm/s)

Thrombosis 
(yes/no)

Thrombus 
acute/

chronic 

Thrombus 
benign/

malignant 

Left hepatic vein 

Left portal vein 

Left hepatic arteryb 

Main portal vein

Main hepatic artery

Right portal vein 

Middle hepatic vein  

Right hepatic vein

Right hepatic artery  

Collateral pericholecystic circulation

Intrahepatic arterio-portal shunt

Collateral perihepatic circulation

Umbilical vein recanalization

Right renal arteryb

Right renal vein 

aThe assessment is supplemented by liver elastography. bTo assess resistivity index (RI) and the pulsatility index (PI). US: ultrasound. 

In the latter, we evaluate the RI (normal value 0.55 to 
0.7)16 and PI (normal value 0.9 to 1)17. We continue with 
the main portal vein, determining diameter (mm), flow 
direction (antegrade or retrograde), spectral morphol-
ogy, flow velocity (cm/s) (Figure 5B-C), the presence of 
a thrombus, indicating if it is acute or chronic, and 
benign (Figure 5D-E) or malignant (Figure 5F), and 
recanalization or cavernomatous transformation (Figure 
5G-H). Then, the main hepatic artery is assessed using 
the same parameters, adding the RI (normal value: 
0.55-0.77)16 and PI (normal value: 1)16 (Figure 5I). 

The right portal vein and right and middle hepatic 
veins (Figure 6A-C) are assessed by measuring the 
diameter (mm), flow direction (antegrade or retrograde), 
spectral morphology, flow velocity (cm/s), and the pres-
ence of a thrombus, specifying if it is acute or chronic 
and benign or malignant. The right hepatic artery is 
next, with an assessment of the same parameters. The 
RI (normal value 0.55-0.77) and PI (normal value 1) are 
assessed16.

The assessment continues with the pericholecystic 
collateral circulation (Figure 6D), intrahepatic arterio- 
portal shunts, perihepatic collateral circulation (Figure 6E), 

and through the falciform ligament, the recanalization 
of the umbilical vein (Figure 6F-G). We continue with 
the right renal artery and vein, measuring the same 
parameters: diameter (mm), flow direction (antegrade 
or retrograde), spectral morphology, flow velocity (cm/s), 
and the presence of a thrombus. In addition, RI (normal 
value < 0.7) and PI (normal value between 1.0 and 1.5) 
are measured in the right renal artery13,18. The assess-
ment is complemented with hepatic (Figure 6H) and 
splenic elastography (Figure 6I) to assess steatosis, 
inflammation, and/or stiffness18.

Morphologic grayscale US findings of the 
inframesocolic area in portal hypertension 
assessment

With the patient in the supine position, grayscale US 
is performed, starting with the left parietocolic gutter for 
ascitic fluid (Figures 7A, B, C), collateral circulation 
(Figures 7D, E, F), and lesions (Table 6A). The right 
parietocolic gutter and pelvis are examined for the same 
findings15. 
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Figure 5. Hemodynamic US duplex findings of the hepatic region in portal hypertension assessment. A: a 39-year-old woman, subcostal 
transverse view of the liver US duplex showing the left hepatic vein with patency and normal spectral morphology. B: a 54-year-old woman 
with CLD, sagittal view with patient in left oblique position and intercostal approach with US power Doppler, showing portal vein dilated (white 
arrowhead) of 16 mm (not shown) with predominant hepato-petal flow. C: a 40-year-old woman, transverse view, subcostal with US B-flow 
of the porta hepatis with normal patency (white arrowhead). A 48-year-old man with idiopathic portal hypertension. D: grayscale US, sagittal 
view with patient in left oblique position and intercostal approach showing the main portal vein with endoluminal echogenic material along 
its entire course in relation to chronic thrombosis (white arrowheads). E: a color Doppler US sagittal view with patient in left oblique position 
and intercostal approach showing absent flow in the main portal vein (white arrowhead) and a compensatory increase in the main hepatic 
artery secondary to chronic portal vein thrombosis. F: a 28-year-old man with hepatocarcinoma. US color Doppler showing endoluminal 
echogenic material in the main portal vein (not shown) with intralesional flow (white arrowheads) in relation to a malignant portal vein 
thrombus. A 36-year-old woman with Budd-Chiari syndrome. G: grayscale US and H: US power Doppler transverse views showing multiple 
dilated, tortuous, periportal vessels in relation to cavernomatous transformation of the portal vein. I: a 40-year-old man with CLD, US duplex, 
showing hepatic artery (white arrowhead) with patency, spectral morphology, velocity, and normal IR and IP with hepatofugal flow (blue 
color) in the portal vein (yellow arrowhead).
US: ultrasound; CLD: chronic liver disease.
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Hemodynamic duplex US findings of the 
inframesocolic area in portal hypertension 
assessment

The examination continues with duplex US to deter-
mine the presence of perirectal plexuses, describing 
their diameter, flow direction, spectral morphology, and 
flow velocity (Table 6B). We continue with the omental 
veins and retroperitoneal veins, evaluating the same 
parameters15.

CONCLUSION

This technical note proposes a comprehensive duplex 
US acquisition and analysis protocol of portal hyper-
tension with the assessment of five regions: splenic, 
pancreatic, cardiac, hepatic, and inframesocolic. Radio-
logists must have a profound knowledge of the embry-
ology, anatomy, hemodynamics, and pathophysiology  
of the portal system and splanchnic circulation to opti-
mally and accurately assess the morphological and 
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Figure 6. Hemodynamic US duplex findings of the hepatic region in portal hypertension assessment. A: a 32-year-old woman patient with US 
duplex showing the middle hepatic vein with patency, tetraphasic spectral morphology, and normal velocity.  B: a 36-year-old woman with 
chronic Budd-Chiari syndrome; US power Doppler sagittal view of the right hepatic lobe showing the right hepatic vein (white arrowhead) 
with absent flow, secondary to chronic thrombosis and patency of the right portal vein with hepato-petal flow, with abundant fluid in the right 
pleural cavity. C: a color Doppler US sagittal view of the left hepatic lobe of the same patient showing severe hypertrophy of the caudate 
lobe and dilatation of its draining vein (white arrowhead) with a diameter of 7.4 mm (caliper not shown), perihepatic free fluid and in the right 
pleural cavity. D: a 58-year-old man with alcoholic liver disease. US color Doppler with significant pericholecystic collateral circulation (white 
asterisks). E: a 69-year-old woman, transverse view with US duplex showing collateral circulation in the wall and perihepatic area due to 
recanalization of the umbilical vein (asterisks) with a hepato-fugal velocity of 27.3 cm/s. F: a 69-year-old woman with CLD. Color Doppler US 
transverse view of the left lobe showing a 14 mm dilated vessel along the entire course of the falciform ligament in relation to recanalization 
of the umbilical vein (white arrowheads). G: US duplex with a high-resolution linear transducer in transverse view in the periumbilical region 
shows a periumbilical collateral circulation with dilated and tortuous vessels of 2.2 cm caliber (not shown) with severe hepatofugal flow with 
a velocity of 66.1 cm/s. H: a 69-year-old man with alcoholic liver disease. Oblique view with intercostal approach of the right hepatic lobe 
over segment V using ARFI elastography with two determinations of 13.9 and 15.7 KPa; the median after 12 determinations (not shown) was 12.2 
kPa. Metavir score F4 = cirrhosis. I: a 72-year-old woman with CLD. A transverse approach to the spleen with ARFI elastography showing 
five measurements after 12 determinations (not shown) was 12.8 kPa, Metavir score F0 = normal.
US: ultrasound; CLD: chronic liver disease; kPa: kilopascals; ARFI: Acoustic Radiation Force Impulse.

A B C

D E F

G H I

hemodynamic imaging findings to confirm or rule out 
portal hypertension, defining the site of obstruction (pre-
hepatic, intrahepatic or posthepatic), information that  
is essential for clinical management of the patient. Fur-
thermore, duplex US examination is useful for patient  
follow-up and determining prognosis. It is widely avail-
able with no exposure to radiation and at low cost. 
Validation of this comprehensive duplex US acquisition 
and analysis protocol for portal hypertension requires 

prospective studies in different hospital centers or vas-
cular laboratories by radiologists with different levels of 
experience.
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Table 6A. Morphologic grayscale US findings of the inframesocolic region in portal hypertension assessment 

Description

Left paracolic gutter:  describe ascitic fluid, collateral circulation or lesions, if present.

Right paracolic gutter: describe the ascitic fluid, collateral circulation or any lesions, if present.

Pelvic cavity:  describe the ascitic fluid, collateral circulation or any lesions, if present.

US: ultrasound.

Figure 7. Grayscale US findings of the inframesocolic region in portal hypertension assessment. A and B: a 36-year-old woman with Budd-
Chiari syndrome, longitudinal view on grayscale US in the right and left parietocolic gutter with free fluid in both gutters (asterisks). C: a 
77-year-old woman with post-necrotic cirrhosis, grayscale US, transverse view showing the bladder (white asterisk) and abundant free fluid 
around the bladder (yellow asterisk). A 48-year-old man with alcoholic liver disease. D-E: grayscale US with a high-resolution linear transducer 
(10 MHz) showing multiple 8 to 10 mm periumbilical dilated vessels (white asterisks) in relation to the collateral circulation. F: color Doppler 
US with sectorial transducer (6 MHz) showing multiple dilated periumbilical vessels in relation to the collateral circulation.
US: ultrasound; CLD: chronic liver disease.

A B C

D E F

Table 6B. Hemodynamic duplex US findings of the inframesocolic region in the assessment of portal hypertension

Description Diameter  
(mm)

Direction of flow 
(antegrade/retrograde)

Spectral 
morphology

Flow velocity  
(cm/s)

Perirectal plexus

Omental veins

Retroperitoneal veins

US: ultrasound.
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ABSTRACT

T2 relaxometry in magnetic resonance imaging (MRI) provides quantitative information on peripheral nerves. This study aimed 
to determine the normal MRI 3.0T T2 relaxometry values of the ulnar, median, and sciatic peripheral nerves in healthy Mexican 
subjects. This cross-sectional study examined the T2 relaxation times and T2 maps in 3.0T MRI of four anatomical regions: the 
elbow at the level of the cubital tunnel to assess the ulnar nerve; the wrist at the level of the carpal tunnel to assess the me-
dian nerve and the right and left hip at the level of the piriformis muscles to assess the sciatic nerves of both hips. One hundred 
twenty peripheral nerves from 30 healthy Mexican volunteers were examined: 30 ulnar nerves, 30 median nerves, 30 right 
sciatic nerves, and 30 left sciatic nerves. The mean ± SD T2 relaxation time of the ulnar nerve was 73.91 ms ± 16.8 ms; of the 
median nerve, 58.8 ms ± 9 ms; of the right sciatic nerve, 70.5 ms ± 13.9 ms and of the left sciatic nerve, 70.2 ms ± 17.2 ms. 
The T2 relaxometry values of the ulnar, median, and sciatic peripheral nerves averaged 59 to 74 ms. These values are compa-
rable to normal reference values in other populations. This study is the first that establishes normal T2 relaxometry values in 
healthy Mexican subjects.

Keywords: Magnetic resonance imaging. Relaxometry. Peripheral nerves. Median nerve. Ulnar nerve. Sciatic nerve.

INTRODUCTION

Specific high-resolution T2-weighted magnetic reso-
nance imaging (MRI) sequences have been used for the 
morphological study of nerves1,2. The T2 relaxation 
time, which corresponds to the signal loss after a radio-
frequency (RF) pulse follows an exponential, tissue- 
specific decay, describes the time in which transverse 
magnetization decreases to 37% of its initial value, 
allows separation of each component of the tissues3, 
and provides quantitative information about the relax-
ation properties and internal structure of the tissue.

Normal T2 relaxometry values of the peripheral 
median, ulnar, and sciatic nerves with a 3.0 Tesla (T) 
resonator average 35 to 85 milliseconds (ms)4-6. The T2 
relaxation time may vary depending on age, sex, relax-
ometry sequence parameters with echo time interval, 
magic angle, RF field, receiver coil sensitivity, region  
of interest (ROI) measurement, hardware differences 
(receiver coils, RF channels), and magnet field strength 
(1.5T, 3.0T or 7.0T)3,7-10.

Various conditions affecting the structure and com-
position of peripheral nerves are associated with an 
abnormal T2 relaxation time10,11. The T2 relaxation time 
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has been studied in the central nervous system, but 
there are few studies of the peripheral nerves2. This 
study aimed to determine the normal 3.0T MRI T2 
relaxometry values of the ulnar, median, and sciatic 
nerves in healthy Mexican subjects.

MATERIAL AND METHODS 

This prospective cross-sectional study was con-
ducted from May to November 2024 in the Department 
of Magnetic Resonance of the Hospital Angeles Lomas 
in Huixquilucan, State of Mexico, Mexico. We included 
healthy Mexican subjects aged 18 to 75. Individuals 
with contraindications for MRI, with suspected periph-
eral nerve damage on MRI, or with an incomplete MRI 
were excluded. Written informed consent was obtained, 
and the institutional ethics and research committees 
approved the study.

Study development and variables

Data on age, sex, weight, height, and body mass 
index (BMI) were collected. MRI T2 relaxation time and 
color T2 maps of four anatomical regions were obtained 
at the elbow at the level of the cubital tunnel to assess 
the ulnar nerve, at the wrist at the level of the carpal 
tunnel to assess the median nerve, and at the right and 
left hip at the level of the piriformis muscles to assess 
the sciatic nerves of both hips.

Imaging acquisition and analysis protocol

A 3.0T resonator (MAGNETOM Skyra, Siemens 
Healthineers, Erlangen, Germany) was used. The MRI 
T2 relaxation time protocol is described in table 1. 
Images of the ulnar nerve were acquired with an 
Ultraflex coil with 18 RF channels. Axial T2-weighted 
multiple echo data image combination (MEDIC) 
sequences (TR/TE 575/22 ms) were used for anatom-
ical assessment. Images of the median nerve were 
acquired at the wrist with a 16-channel RF hand/wrist 
coil. An isotropic coronal T2-weighted MEDIC sequence 
(TR/TE 28/15 ms) was used for anatomical assess-
ment. Images of the sciatic nerve were acquired with a 
30-channel RF body coil. An isotropic coronal T2-
weighted MEDIC sequence (TR/TE 23/13 ms) was used
to localize the right and left sciatic nerves.

The area of spin-echo multi-echo sequences (T2 
relaxometry) was determined with the anatomical 
T2-weighted sequences, in which 11 slices, each with 
12 images with different echo time weighting, were 

selected. These images were automatically processed 
by the equipment, providing two image series: one in 
grayscale and one in color (T2 map), which were 
merged to determine the anatomical region. Once the 
analyzed nerve was located, a ROI of 2-2.5 cubic  
millimeters was manually placed.

Fat suppression was performed in the T2 sequences 
to define the ROI and rule out compressive pathology of 
the peripheral nerves. ROI selection and T2 relaxation 
time were determined with syngo.MR software (Siemens 
Healthineers, Erlangen, Germany). The mean relaxation 
time of all pixels within the ROI was determined.

Statistical analysis

The data matrix was acquired with the quantitative T2 
relaxation time of each peripheral nerve. The Shapiro-
Wilk normality test was performed with a p < 0.05 and 
showed a non-normal distribution of T2 relaxation time 
for the ulnar, median, and sciatic nerves. The median 
and interquartile range (IQR) were used as measures of 
central tendency for quantitative T2 relaxation times. 
Inferential analysis between age and T2 relaxation time 
of each nerve analyzed was performed with Pearson’s 
correlation; a p value < 0.05 was considered statisti-
cally significant for the tests. RkWard v0.8.0 software 
(Friedrichsmeier, 2024)12 was used for the analysis. 

RESULTS

Thirty healthy Mexican subjects and a total of 120 
peripheral nerves were assessed with T2 relaxometry 
and color T2 maps on 3.0T MRI: 30 ulnar nerves, 30 
median nerves, 30 right sciatic nerves, and 30 left sci-
atic nerves. The age, sex, weight, height, and BMI of 
the participants are listed in supplementary table 1.  
The mean age was 41 ± 14.2 years (min 21, max 74 
years) with a predominance of women (n = 18, 60.0%). 
Mean weight was 75.9 ± 14.4 kg, height 163.6 ± 11.5 cm 
and BMI 28.3 ± 4.2. The T2 relaxation times of the 
ulnar, median, right and left sciatic nerves are reported 
for each patient.

Table 2 shows a T2 relaxation time for the ulnar nerve 
of 73.91 ± 16.8 ms; for the median nerve, 58.8 ± 9.0 ms; 
the right sciatic nerve, 70.5 ± 13.9 ms, and the left  
sciatic nerve, 70.2 ± 17.2 ms. Figure 1 at the level of 
the cubital tunnel shows the ulnar nerve with homoge-
neous hyperintensity with normal-appearing hypointense 
fascicles and a T2 relaxation time of 77.75 ms. Figure 2 
at the level of the carpal tunnel shows the median nerve 
with homogeneous hyperintensity with normal-appearing 
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Table 1. 3.0T MRI T2 relaxation time protocol of the ulnar, median, and sciatic nerves of healthy Mexican subjects

Region Peripheral  
nerve

Sequence Fat 
saturation

FOV  
(mm)

Matrix TR 
(ms)

TE  
(ms)

Slice thickness/
gap (mm)

Elbowa

Ulnar

T2-weighted axial Yes 90*90 240*320 575 22 2.5/0.3

Elbowa T2 map SE ME axial Yes 90*90 169*192 2400 12 echos, 10 ms 
each (10-120)

3.0/6.0

Wristb

Median

T2-weighted coronal iso Yes 100*100 233*256 128 15 0.4/0.0

Wristb T2 map SE ME axial Yes 90*90 169*192 2400 12 echos, 10 ms 
each (10-120)

3.0/6.0

Hipc

Sciatic

T2-weighted coronal iso Yes 250*400 360*576 23 13 1.0/0.0

Hipc T2 map SE ME axial Yes 159*159 169*192 2400 12 echos, 10 ms 
each (10-120)

3.5/7.0

aAt the cubital tunnel level; bAt the carpal tunnel level; cAt the piriformis muscles. T:tesla; MRI: magnetic resonance imaging; T2- weighted 
image; SE: spin-echo; ME: multi-echo; FOV: field-of-view; T2- weighted image; TR: repetition time; TE: echo time; ms: milliseconds;  
mm: millimeters.

Table 2. 3.0T MRI T2 relaxation time of the ulnar, median, and sciatic nerves of healthy Mexican subjects

Description Mean ± SD Minimum Median Maximum Q1 Q3 IQR

Ulnar nerve, ms 73.91 ± 16.8 46 73.9 117 62.2 85.0 22.7

Median nerve, ms 58.8 ± 9.0 44 58.8 77 52.2 66.0 13.7

Right sciatic nerve, ms 70.5 ± 13.9 43 70.5 103 61.2 79.2 18.0

Left sciatic nerve, ms 70.2 ± 17.2 32 66 107 61.0 86.0 25.0

T: tesla; MRI: magnetic resonance imaging; SD: Standard Deviation; Q1: first quartile; Q3: third quartile; IQR: interquartile range; ms: milliseconds; 
T2- weighted image.

Figure 1. Axial MRI at the level of the cubital tunnel. A: T2 relaxometry multi-echo sequence (TR = 2400 ms; TE = 12 ms) shows homogeneous 
hyperintensity with normal appearing hypointense fascicles of the ulnar nerve (yellow dashed circle). B: T2 relaxometry color map with ROI 
of 2.36 mm2 in the ulnar nerve with a T2 relaxation time mean of 77.75 ms (yellow arrowheads).
ME: multi-echo; mm2: square millimeters; MRI: magnetic resonance imaging; ms: milliseconds; ROI: region of interest; SE: spin echo; T2- weighted image; TE: echo 
time; TR: repetition time.

A B
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hypointense fascicles and a T2 relaxation time of 68.18 
ms. Figure 3, at the level of the piriformis muscles, 
shows the right and left sciatic nerves with homoge-
neous hyperintensity, hypointense fascicles of normal 
aspect and a T2 relaxation time of 97.75 ms for the right 
sciatic nerve and 89 ms for the left sciatic nerve. 

The linear regression showed a weak correlation 
between the participant´s age and the T2 relaxation 
times of the ulnar nerve, median nerve, and sciatic 
nerve (Figure 4). For the ulnar nerve and the median 
nerve, the correlation was positive when the T2 relax-
ation times increased with increasing age. The sciatic 

nerve, analyzed bilaterally (n = 60), showed a signifi-
cant negative linear correlation (p = 0.025); as age 
increased, T2 relaxation times decreased.

DISCUSSION

In our study, the T2 relaxometry values on 3.0T MRI 
of the ulnar, median, and sciatic nerves were in a mean 
range of 59 to 74 ms. These values are comparable to 
normal reference values in other populations. This 
study is the first that determines normal T2 relaxometry 
values in healthy Mexican subjects.

Figure 2. Axial MRI at the level of the carpal tunnel. A: T2 relaxometry multi-echo sequence (TR = 2400 ms; TE = 12 ms) shows homogeneous 
hyperintensity with normal appearance hypointense fascicles in the median nerve (yellow dashed circle). B: T2 relaxometry color map with a ROI 
of 2.25 mm2  in the median nerve with a T2 relaxation time mean of 68.18 ms (yellow arrowheads).
ME: multi-echo; mm2: square millimeters; MRI: magnetic resonance imaging; ms: milliseconds; ROI: region of interest; SE: spin echo; T2- weighted image; TE: echo 
time; TR: repetition time.

A B

Figure 3. Axial MRI at the level of the piriformis muscles. A: T2 relaxometry multi-echo sequence (TR = 2400 ms; TE = 10 ms) showing the right  
(yellow dashed circle) and left (white dashed circle) sciatic nerve with homogeneous hyperintensity and normal appearing hypointense fascicles. 
B: T2 relaxometry color map showing a ROI of 2.39 mm2 in the right sciatic nerve with a mean 97.75 ms T2 relaxation time (yellow arrowheads) and 
a 2.33 mm2 ROI in the left sciatic nerve with a mean 89 ms T2 relaxation time (white arrowheads). 
ME: multi-echo; mm2: square millimeters; MRI: magnetic resonance imaging; ms: milliseconds; ROI: region of interest; SE: spin echo; T2- weighted image; TE: echo 
time; TR: repetition time.
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The assessment of neuropathies by MRI is usually 
based on qualitative findings. Reports of quantitative 
assessments of peripheral nerves by T2 relaxometry 
are scarce1,4-7,11,13. Normal T2 relaxation times of peri-
pheral nerves average 35 to 85 ms. Kronlange et al.4 
reported in German subjects, a median nerve mean 
value of 69.58 ± 7.00 ms; a mean value for the ulnar 
nerve of 75.30 ± 10.19 ms, and a mean value for the 
sciatic nerve of 70.85 ± 4.91 ms. Preisner et al.5 reported 
64.54 ± 8.2 ms for the sciatic nerve in German patients. 
Gambarota et al.6 reported a mean T2 relaxation time 
of 35.5 ± 2.8 ms for the median nerve in Swedish  
subjects. Cha et al.14 showed the T2 relaxation time 

variability of the median nerve in healthy subjects 
according to the level of the carpal tunnel where the 
examination is performed: the distal radioulnar carpal 
tunnel was 44.0 ms (40.4-47.6), the proximal carpal tun-
nel, 41.8 ms (36.8-46.9), and the distal carpal tunnel, 
41.8 ms (36.8-46.9). In our study, the ulnar, median and 
sciatic nerves were examined with a 3.0T MRI. This 
resulted in a mean T2 relaxation time for the ulnar nerve 
of 73.91 ± 16.8 ms; for the median nerve 58.8 ± 9.0 ms; 
for the right sciatic nerve 70.5 ± 13.9 ms, and for the 
left sciatic nerve 70.2 ± 17.2 ms. These values are com-
parable to normal reference values of other populations. 
The T2 relaxometry values of the ulnar, median, and 
sciatic peripheral nerves in our study can be considered 
normal values in healthy Mexican individuals.

The inhomogeneity of the magnetic field must be 
considered. Also, the different providers and programs 
that process the images may result in variable T2 relax-
ation time quantitative values. The T2 relaxation time 
of the nerve varies depending on the magnetic field 
strength. It decreases with increasing magnetic field 
strength. Since the magnetic field gradients increase 
with the magnetic field strength of the MRI, the dephas-
ing effect increases at a higher field strength. However, 
the advantage is that sequences with the shortest  
possible TE can take full advantage of the increased 
signal-to-noise ratio and better define the image7. 
Gambarota et al.7 in Swedish individuals reported T2 
relaxometry values of the median nerve with different 
magnetic field strengths. The results were 50 ms in a 
1.5T MRI resonator8; a mean of 35 ms in a 3.0T MRI 
resonator, and 20 ms in a 7.0T MRI resonator6. On the 
other hand, T2 relaxometry time was reported as a 
reproducible and reliable method5. In our study, only a 
3.0T MRI resonator was used, so our results in Mexican 
subjects only apply to this magnetic field strength.

A correlation between T2 relaxations time and age 
has not been defined7,13. Kronlage et al.13 in a study of 
60 German healthy subjects evaluated 3.0T MRI T2 
relaxation of the median, ulnar, and sciatic nerves. They 
found a significant correlation with height (r = 0.28,  
p = 0,04), weight (r = 0.40, p = 0.002), and body mass 
index (r = 0.35, p = 0.008), but not with age (r = 0.23, 
p = 0.09). We found a weak correlation between age 
and T2 relaxation time. For the ulnar and the median 
nerve, the correlation was positive, and T2 relaxation 
time increased with increasing age. The sciatic nerve 
had a significant negative linear correlation (p=0.025) 
as T2 relaxation times decreased with increasing age. 
There are insufficient data to establish a correlation 
between age and T2 relaxation time.
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Figure 4. Scatter plots showing the correlation between the age of 
each patient and the T2 relaxation time. A: ulnar nerve with a weak 
positive correlation (r = 0.08, p = 0.66), B: median nerve with a weak 
positive correlation (r = 0.26, p = 0.16), C: sciatic nerve with a signi-
ficant negative correlation (r = −0.28, p = 0.026). 
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The strengths of the study relate to the imaging 
modality and the study protocol for determining the T2 
relaxation time, making it reproducible. The weak-
nesses of the study are related to the sample size and 
the fact that only a 3.0T MRI scanner was used.

CONCLUSION

In our study, 3.0T MRI T2 relaxometry values of the 
ulnar, median, and sciatic peripheral nerves in healthy 
Mexican subjects were comparable to normal values in 
other populations. We believe that the T2 relaxometry 
values of the examined peripheral nerves in our explor-
atory study can be considered normal values in healthy 
Mexican subjects. Further studies with a larger popu-
lation and different magnetic field strengths are needed 
to confirm the consistency of the values considered 
normal in peripheral nerves.
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ABSTRACT

Lemmel syndrome is a rare cause of obstructive jaundice caused by extrinsic compression of the common  
bile duct by a periampullary duodenal diverticulum (PAD). This case report describes Lemmel syndrome in a 
71-year-old woman with abdominal pain and jaundice due to a PAD with a completely intradiverticular major 
papilla. Abdominal ultrasound (US) revealed a distended gallbladder with gallstones and wall thickening with 
no evidence of an obstructive mass. Computed tomography (CT) revealed a duodenal diverticulum with mixed 
contents, causing extrinsic compression of the common bile duct. 3.0T magnetic resonance cholangiopancrea-
tography (MRCP) confirmed the intradiverticular location of the biliary and pancreatic ducts. Endoscopic  
retrograde cholangiopancreatography (ERCP) was performed with sphincterotomy and biliary stenting. The pro-
cedure decompressed the biliary tree, resolved the obstruction and inflammatory process, and resulted in a 
favorable clinical recovery. This presentation is unique due to the intradiverticular location of the biliary and 
pancreatic ducts with no tumor-related findings. This case report provides diagnostic evidence of a rare anatomic 
variant, classified as type I Lemmel syndrome according to the both Boix and Li-Tanaka classifications. It high-
lights the role of non-invasive radiologic techniques in evaluating atypical biliopancreatic disorders. It is reported 
for educational purposes.

Keywords: Lemmel syndrome. Acute cholangitis. Intradiverticular papillary obstruction. Periampullary duodenal diverticulum. 
Case report.

INTRODUCTION

Lemmel syndrome was first described by Gerhard 
Lemmel in 1934, as a rare cause of obstructive jaun-
dice resulting from extrinsic compression of the com-
mon bile duct by a periampullary duodenal diverticulum 
(PAD)1-3. This condition is more common in women 
(70%), with a mean age at diagnosis of 70 years2,3. PAD 
prevalence is between 5% and 33%, based on ERCP 
series4. PAD can distort the anatomy of the Vater 

papilla, cause clinical symptoms in about 5% of cases, 
and increase the risk of choledocholithiasis even after 
cholecystectomy2-6. Clinical manifestations include jaun-
dice, abdominal pain, and complications such as chol-
angitis or pancreatitis2,3,5.

Imaging techniques, abdominal ultrasound (US), 
computed tomography (CT), and magnetic resonance 
cholangiopancreatography (MRCP), play a key role in 
diagnosis because they accurately identify PAD and  
its anatomical relationship with the bile duct1,5,7-9. 
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Despite advances in imaging, Lemmel syndrome is a 
diagnostic challenge due to its non-specific presenta-
tion and overlapping with other benign or malignant 
causes of biliary obstruction7-9.

PAD classifications, such as those by Boix10 and 
Li-Tanaka5, correlate the characteristics of the divertic-
ulum during endoscopic retrograde cholangiopancrea-
tography (ERCP)2-5,9,10. There is no consensus on the 
optimal diagnostic or therapeutic approach; systematic 
studies are few, and most publications are case reports 
based on individual experience. This case report of a 
71-year-old woman with abdominal pain and jaundice 
due to PAD with a completely intradiverticular major 
papilla, classified as type I according to the Boix-Li-
Tanaka classification, highlights the value of diagnostic 
imaging based on Lemmel syndrome radiological find-
ings. It focuses on the usefulness of MRCP and CT  
as non-invasive diagnostic tools in patients with non- 
neoplastic obstructive jaundice.

CLINICAL CASE DESCRIPTION

A 71-year-old woman diagnosed with diabetes melli-
tus came to the emergency department with severe 

abdominal pain radiating to the right upper quadrant, 
accompanied by nausea and vomiting. On physical 
examination, her vital signs were normal, and she had 
scleral and skin jaundice. The abdomen was soft  
and compressible but tender on deep palpation in the 
right upper quadrant, with a positive Murphy’s sign. 
Bowel sounds were normal. There were no masses or 
organomegaly, and no signs of peritonitis. Laboratory 
results were a C-reactive protein of 133 mg/L (normal: 
0.2-0.9 mg/L), leukocytes of 12.68 × 109/L (normal:  
4-10 × 109/L), total bilirubin of 3.93 mg/dL (normal:  
0.4-1.9 mg/dL), alkaline phosphatase of 80 U/L  
(normal: 39-99 U/L), AST of 38 U/L (normal: 12-42 U/L), 
serum amylase of 102 U/L (normal: 38-149 U/L),  
and a serum procalcitonin of 0.4 ng/mL (normal:  
< 0.1-0.5 ng/mL).

Imaging findings

Abdominal US examination (ACUSON Sequoia™, 
Siemens Inc., Forchheim, Germany) showed a dis-
tended gallbladder (120.2 cc) with wall thickening and 
hyperechoic images with posterior acoustic shadow-
ing suggestive of cholelithiasis, and a reduction in the 

Figure 1. A 71-year-old woman with abdominal pain and jaundice diagnosed with Lemmel syndrome. A: grayscale US, transverse view of the left 
lobe of the liver showing intrahepatic bile duct dilatation (red arrowhead). B: grayscale US in split-screen mode with longitudinal and transverse 
views of a dilated gallbladder (9.6 × 4.6 × 5.4 cm, calculated volume of 120.2 cm3) with wall thickening (blue arrowheads) and hyperechoic images 
(red arrowheads) causing posterior acoustic shadowing (yellow arrowhead). C: grayscale US and color Doppler in split-screen mode with a 
longitudinal view of the common bile duct (red arrowhead) with a 5.3 mm diameter in its retroduodenal segment. D: non-contrasted CT, axial 
view soft tissue window showing gallbladder enlargement (asterisk). E: non-contrasted CT, axial view, soft tissue window shows gallbladder wall 
thickening (blue arrowhead), fluid content (yellow arrowhead), and gas (red arrowheads). F: non-contrasted CT, axial view, soft tissue window 
shows a sac-like formation (dashed line) with food content and gas, originating from the second segment of the duodenum (yellow arrowhead).
CT: computed tomography; US: ultrasound. 
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diameter of the common bile duct (5.3 mm) at its retro-
duodenal portion (Figure 1A-C). 

A CT scan (SOMATOM Definition AS 128™; Siemens 
Healthineers Inc., Erlangen, Germany) showed an 
ovoid, heterogeneous structure with mixed gas and 
food debris originating from the second segment of the 
duodenum, consistent with a PAD (Figure 1D-F), caus-
ing extrinsic compression of the common bile duct. The 
gallbladder was enlarged with heterogeneous contents 
(fluid and gas) and wall thickening.

MRCP (MAGNETOM Vida 3.0T, Siemens Healthineers 
Inc., Erlangen, Germany) showed an enlarged gallblad-
der with marked wall thickening, pericholecystic edema, 
multiple 9 to 14 mm gallstones (Figure 2A-B), and 
mixed contents of fluid, biliary sludge and a microlith in 
the distal third (Figure 2C). The biliary tree had central 
intrahepatic dilatation, and the common bile duct was 
dilated 10 mm (not shown). A 4.7 × 2.8 cm saccular 

formation arising from the anterior wall of the second 
segment of the duodenum, containing food debris, was 
visualized and compressed the common bile duct  
and the pancreatic duct in their intrapancreatic por-
tions. The common bile and pancreatic ducts were 
intradiverticular (Figure 2D-F). According to the Boix 
and Li-Tanaka classifications, the diagnosis was type I 
Lemmel syndrome with simultaneous intradiverticular 
compression of the common bile duct and the pancre-
atic duct (Figure 3).

Clinical outcome

ERCP with sphincterotomy and biliary stent insertion 
was performed (Figure 4). The procedure successfully 
decompressed the biliary tree, resolved the obstruction 
and inflammatory process, and led to a favorable clin-
ical recovery.

Figure 2. 3.0T MRI of a 71-year-old woman with abdominal pain and jaundice diagnosed with Lemmel syndrome. A: coronal T2-weighted HASTE 
view shows a distended gallbladder with hypointense areas suggestive of gallstones (yellow arrowheads) and proximal common bile duct 
dilatation (red arrowhead). B: axial T2-weighted HASTE view shows a distended gallbladder with wall thickening (blue arrowhead), a fluid 
level and intraluminal hypointense images consistent with gallstones (yellow arrowheads). A saccular formation (dashed line) is seen exerting 
a mass effect on the distal common bile duct (red arrowhead). C: axial T2-weighted HASTE view shows a fluid level with biliary sludge (blue 
arrowhead), a distal common bile duct segment (red arrowhead), and an intraductal microstone (yellow arrowhead). D: sagittal T2-weighted 
HASTE view shows a saccular image (red arrowhead) arising from the second segment of the duodenum (yellow arrowhead) compressing 
the distal common bile duct (blue arrowhead). E: 3D MIP reconstruction shows a saccular formation compressing both the common bile duct 
and the pancreatic duct (red arrowhead) and dilatation of the common hepatic duct (yellow arrowhead) and the cystic duct (blue arrowhead). 
F: a 3D MIP reconstruction shows compression of the common bile duct (yellow arrowhead) and the pancreatic duct (blue arrowhead). The 
Vater papilla is within the diverticulum (red arrowhead). The diagnosis was Lemmel syndrome, type I PAD, according to the Boix and Li-Tanaka 
classifications.
3.0 T: 3 Tesla; 3D MIP: three-dimensional maximum intensity projection; HASTE: Half-Fourier Acquisition Single-shot Turbo Spin Echo; MRI: magnetic resonance 
imaging; PAD: periampullary diverticulum.
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Figure 3. Boix classification for periampullary duodenal diverticula. A: type I, diverticulum within the papilla. B: type II, diverticulum at the 
papillary border. C: type III, diverticulum is 2-3 cm from the papilla. Li-Tanaka classification categorizes PAD and the relationship between 
the diverticula and the main papilla. D: type I, the papilla is within the diverticulum. E: type IIa, the papilla is at the margin of the diverticulum 
within the margin. F: type IIb, the papilla is in the margin of the diverticulum outside the margin, <1 cm. G: type III, the papilla is outside the 
margin, ≥ 1 cm. H: type IVa, ≥ 2 diverticula; the papilla is outside the margins of at least one diverticulum, <1 cm. I: type IVb, ≥ 2 diverticula; 
the papilla is outside the margins of all diverticula, ≥ 1 cm.
PAD: periampullary diverticulum.
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DISCUSSION

This article reports the case of a 71-year-old woman 
with abdominal pain and obstructive jaundice diag-
nosed with Lemmel syndrome secondary to PAD com-
pressing intradiverticular biliary and pancreatic ducts. 
This anatomical variant was classified as Boix and 
Li-Tanaka type I PAD and represents a rare form that 
increases the complexity of diagnosis and treatment. 

Despite the lack of standardized protocols, MRCP and 
CT evaluation allowed accurate anatomical imaging 
and a safe and effective treatment approach.

MRCP is a non-invasive technique for the compre-
hensive assessment of the pancreatobiliary tree. It is 
particularly useful in patients with obstructive jaundice 
of unknown cause11,12. Its ability to visualize the proxi-
mal and distal ducts and extrabiliary structures, espe-
cially when combined with T1, T2, or 3D-weighted 
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Figure 4. A 71-year-old woman with abdominal pain and jaundice diagnosed with Lemmel syndrome. A: ERCP image showing a duodenal 
diverticulum with an intradiverticular ampulla of Vater (blue arrowhead) and the distal end of a 7 Fr, 10-cm plastic biliary stent (yellow 
arrowhead). B: non-contrasted CT, oblique coronal view, soft tissue window shows a plastic biliary stent in the common bile duct (blue 
arrowhead), the distal end is in the diverticulum (yellow arrowhead). C: non-contrasted CT, axial view, soft tissue window shows a saccular 
formation with food content and gas (dashed line), arising from the second segment of the duodenum (red arrowhead); the distal end of the 
plastic biliary stent is positioned intradiverticularly (yellow arrowhead).
ERCP: endoscopic retrograde cholangiopancreatography; CT: computed tomography; Fr: French–unit of measure of the outer diameter of flexible tubes.
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sequences, makes it essential in rare entities such as 
Lemmel syndrome. T2-weighted HASTE (Half-Fourier 
Acquisition Single-shot Turbo Spin Echo) sequences 
allow rapid, high-contrast visualization of fluid-rich  
tissue and facilitate the identification of atypical find-
ings, including simultaneous compression of the bile 
and pancreatic ducts by an intradiverticular PAD, even 
in the absence of marked biliary dilatation6,13. The  
combination of multiplanar MRCP and CT increases 
diagnostic sensitivity, helps exclude alternative periam-
pullary pathologies, and avoids unnecessary invasive 
procedures-a particularly important issue in older adult 
patients or those with comorbidities2,9. However, there 
is still a lack of systematic descriptions of imaging  
findings in Lemmel syndrome in the literature, and  
few studies correlate these findings with anatomical 
classifications such as Boix10 or Li-Tanaka5. This case 
adds to the evidence supporting MRCP as the imaging 
modality of choice for compressive bile duct lesions.  
It highlights the need for standardizing imaging criteria 
in rare conditions such as Lemmel syndrome11,12.

PAD is a common anatomical variant encountered 
during ERCP. Large registries such as the Swedish 
Registry of Gallstone Surgery and ERCP report a 5 to 
33% prevalence11. When the major papilla is located 
within a PAD, cannulation becomes a technical chal-
lenge and increases the risk of complications3,15. The 
Boix classification is traditionally used to describe this 
anatomical relationship, although it has limited clinical 
applicability4,6. Gustafsson et al.4 reported that Boix 
type I PAD is associated with a lower cannulation suc-
cess rate (80.1%) and a higher incidence of adverse 

events than other types. In contrast, the Li-Tanaka  
classification offers a more detailed and predictive ana-
tomical description and identifies type I as the most 
technically difficult to cannulate (success rate of 23.1%). 
In comparison, types II and IV have cannulation suc-
cess rates over 99%, providing greater utility for endo-
scopic planning5. These findings underscore the 
importance of systematically incorporating such classi-
fications into pre-ERCP imaging examination, espe-
cially with multiplanar CT and MRCP, to anticipate 
technical difficulties, optimize procedural strategies, 
and reduce morbidity. Accurate anatomic delineation of 
the PAD is critical for improving outcomes. It should be 
a standard diagnostic workup in patients with sus-
pected Lemmel syndrome or complex periampullary 
pathology.

CONCLUSION

This case report of atypical Lemmel syndrome sup-
ports multimodality imaging with MRCP as the corner-
stone of diagnosis. The preference for non-invasive 
imaging techniques, in combination with detailed pre-
operative anatomical assessment, allows anticipating 
technical difficulties in endoscopic procedures, improv-
ing diagnostic accuracy, and contributing to safer and 
more effective clinical management.
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A 55-year-old man with a history of an ischemic stroke due to a more than 80% stenosis of the right and left 
internal carotid arteries (ICA) managed with carotid stenting. Computed tomography angiography (CTA) showed 
a right ICA cervical segment and basilar artery anastomosis (Figure 1A), passing through the hypoglossal canal 
(Figure 1B), consistent with a persistent hypoglossal artery (PHA). Magnetic resonance angiography (MRA) 
showed hypoplasia of the intracranial segments of both vertebral arteries (Figure 1C). 

A PHA is a rare anatomical variant with a 0.1 to 0.2% incidence. It is more common in women, typically on 
the left side, and usually asymptomatic1. However, it can be associated with intracranial aneurysms, glossopha-
ryngeal neuralgia, and hypoglossal nerve palsy2. PHA is an additional challenge for carotid endarterectomy and 
skull base surgery in the context of significant carotid stenosis2,3. Carotid-vertebrobasilar anastomoses are patent 
embryologic variants that create an abnormal connection between the anterior and posterior circulation, often 
resulting in hypoplasia of the vertebrobasilar system and commonly affecting the vertebral arteries3, as in this 
case. Figure 2 is a schematic representation of persistent carotid-vertebrobasilar anastomoses. PHA is the sec-
ond most common carotid-vertebrobasilar anastomosis after the persistent trigeminal artery1.  The most important 
PHA imaging feature is its course through the hypoglossal canal2,3.

Figure 1. A 55-year-old man with a history of ischemic stroke. A: the 3D CTA shows an anastomosis between the right extracranial ICA (white 
arrowhead) and the basilar artery (yellow arrowhead) consistent with a PHA (asterisk). B: a coronal CTA shows the PHA passing through the 
hypoglossal canal (yellow arrowhead). C: 3D-TOF MRA shows hypoplasia of the intracranial segments of both vertebral arteries (white 
arrowheads).
CTA: computed tomography angiography; ICA: internal carotid artery; PHA: persistent hypoglossal artery; MRA: magnetic resonance angiography; TOF: time of flight.

A B C

https://orcid.org/0000-0002-0189-8380
https://orcid.org/0000-0002-2561-6982
mailto:rramossanchez25@gmail.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.JMeXFRI.com
https://crossmark.crossref.org/dialog/?doi=10.24875/JMEXFRI.24000021&domain=pdf
http://dx.doi.org/10.24875/JMEXFRI.24000021


J Mex Fed Radiol iMaging. 2025;4(2):137-138

138

Acknowledgments

The authors thank Professor Ana M. Contreras-
Navarro for her guidance in preparing and writing this 
scientific paper.

Funding

This paper received no external funding.

Conflicts of interest

The authors declare no conflicts of interest.

Ethical considerations

Protection of humans and animals. The authors 
declare that the procedures followed complied with the 
ethical standards of the responsible human experi-
mentation committee and adhered to the World Medical 
Association and the Declaration of Helsinki. 

Confidentiality, informed consent, and ethical 
approval. The authors followed their center's protocol 
for sharing patient data.

Declaration on the use of artificial intelligence. 
The authors declare that no generative artificial intelli-
gence was used in the writing of this manuscript.

REFERENCES
 1. Coulier B. Persistent Hypoglossal Artery. J Belg Soc Radiol. 

2018;102(1):28. doi: 10.5334/jbsr.1481.
 2. Madden NJ, Calligaro KD, Dougherty MJ, Maloni K, Troutman DA. Per-

sistent Hypoglossal Artery: Challenges Associated with Carotid Revas-
cularization. Vasc Endovascular Surg. 2019;53(7):589-592. doi: 
10.1177/1538574419859102.

 3. Vasović L, Milenković Z, Jovanović I, Cukuranović R, Jovanović P,  
Stefanović I. Hypoglossal artery: a review of normal and pathological 
features. Neurosurg Rev. 2008;31(4):385-396. doi: 10.1007/s10143-008-
0145-5. 

Figure 2. Schematic representation of the types of persistent carotid- 
vertebrobasilar anastomoses. The PHA arises from the distal extracranial 
segment of the ICA (yellow dotted circle), typically between the vertebral 
bodies C1 and C3. It runs through an enlarged hypoglossal canal and 
joins the basilar artery inferiorly (black dotted circle).
BA: basilar artery; C: cervical; ECA: external carotid artery; ICA: internal caro-
tid artery; PCA: posterior communicating artery; PHA: persistent hypoglossal 
artery; POA: persistent otic artery; PPA: persistent proatlantal artery; PTA: 
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